
ENERGYPLUS™  

COPYRIGHT ©  1996-2012 The Board of Trustees of the University of Illinois and the Regents of the University of California through 
the Ernest Orlando Lawrence Berkeley National Laboratory pending approval of the US Department of Energy. 
All Rights Reserved. No part of this material may be reproduced or transmitted in any form or by any means without the prior written 
permission of the University of Illinois or the Ernest Orlando Lawrence Berkeley National Laboratory. 
EnergyPlus is a Trademark of the US Department of Energy. 

External Interface(s) 
Application Guide 

Guide for using EnergyPlus with External 
Interface(s) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Date:  September 27, 2012 

 



TABLE OF CONTENTS 

9/27/12 i  

External Interface(s) ......................................................................................................................... 1 

Introduction ..................................................................................................................... 1 

Coupling EnergyPlus with the Building Controls Virtual Test Bed .................................... 1 

Algorithm for data exchange ...................................................................................... 1 

BCVTB Examples ........................................................................................................... 2 

Architecture of System .............................................................................................. 2 

Figure 1: Architecture of the BCVTB with the EnergyPlus client (black) 
and other clients (grey). ........................................................................................ 3 

Table 1. Overview of the EnergyPlus objects used in Examples ........................... 4 

XML Syntax ............................................................................................................... 4 

Example 1: Interface using ExternalInterface:Schedule ............................................. 5 

Creating the EnergyPlus idf file ............................................................................. 5 

Creating the configuration file ............................................................................... 6 

Figure 2: System model in the BCVTB. ................................................................. 7 

Figure 3: Configuration of the Simulator actor that calls EnergyPlus on 
Windows. .............................................................................................................. 8 

Figure 4: Configuration of the Simulator actor that calls EnergyPlus on 
Mac OS X and on Linux. ....................................................................................... 8 

Example 2: Interface using ExternalInterface:Actuator .............................................. 8 

Creating the EnergyPlus idf file ............................................................................. 9 

Example 3: Interface using ExternalInterface:Variable ............................................. 10 

Creating the EnergyPlus idf file ........................................................................... 10 

Creating the configuration file ............................................................................. 12 

Coupling EnergyPlus with Functional Mock-up Units for co-simulation .......................... 12 

Data exchange between EnergyPlus and FMUs ...................................................... 13 

Figure 5: System with two variables that could be either differential or 
algebraic variables. ............................................................................................. 13 

Figure 6: System with one FMU linked to EnergyPlus. ........................................ 14 



TABLE OF CONTENTS 

9/27/12 ii  

Table 2: Use cases with different system configurations ..................................... 14 

Case 1: Linking two systems through differential variables ...................................... 14 

Case 2: Linking two systems through algebraic and differential variables ................ 15 

Requirements .......................................................................................................... 16 

Figure 7: System with one FMU linked to EnergyPlus. ........................................ 16 

Figure 8: System with two FMUs linked to EnergyPlus. ...................................... 16 

FMU Examples .............................................................................................................. 16 

Architecture of the FMU for co-simulation Import ..................................................... 16 

Figure 9: Architecture of the FMU for co-simulation import. ................................. 17 

Table 3. Overview of the EnergyPlus objects used in Examples ......................... 17 

Workflow of the FMU for co-simulation import ......................................................... 17 

Figure 10: Work flow for pre-processing. ............................................................. 18 

FMU Parser ............................................................................................................. 18 

Figure 11: Workflow of FMU parser for pre-processing. ...................................... 19 

Example 1: Interface using 
ExternalInterface:FunctionalMockupUnitImport:To:Schedule ................................... 19 

Creating the EnergyPlus idf file ........................................................................... 19 

Example 2: Interface using 
ExternalInterface:FunctionalMockupUnitImport:To:Actuator .................................... 21 

Creating the EnergyPlus idf file ........................................................................... 21 

Example 3: Interface using 
ExternalInterface:FunctionalMockupUnitImport:To:Variable .................................... 22 

Creating the EnergyPlus idf file ........................................................................... 22 

References ..................................................................................................................................... 24 



External Interface(s)  Introduction 

9/27/12 1  

External Interface(s) 

Introduction 

The ExternalInterface allows coupling EnergyPlus to the Building Controls Virtual Test Bed 
(BCVTB). It also allows importing Functional Mock-up Units (FMUs) for co-simulation and 
conducting co-simulation with various programs. BCVTB is a software environment that 
allows expert users to couple different simulation programs for distributed simulation or for a 
real-time simulation that is connected to a building control system. For example, the BCVTB 
allows simulation of the building envelope and HVAC system in EnergyPlus and the control 
logic in MATLAB/Simulink, while exchanging data between the two programs as they 
simulate. The BCVTB can be downloaded from http://simulationresearch.lbl.gov/bcvtb. An 
FMU is a component which implements the Functional Mock-up Interface (FMI) standard 
(http://www.modelisar.com).  

Coupling EnergyPlus with the Building Controls Virtual Test Bed 

Algorithm for data exchange 

The process in which at least two simulators solve initial-value differential equations that are 
coupled to each other is called co-simulation. Various algorithms are possible for the data 
exchange. In the BCVTB, data are exchanged between its client programs, including 
EnergyPlus, using a fixed synchronization time step. There is no iteration between the clients. 
In the co-simulation literature, this coupling scheme is referred to as quasi-dynamic coupling, 
loose coupling or ping-pong coupling (Hensen 1999, Zhai and Chen 2005). 
The algorithm for exchanging data is as follows: Suppose we have a system with two clients, 
with client 1 being EnergyPlus and client 2 being, for example, the Simulink program from 
Mathworks. Suppose each client solves an initial-value ordinary differential equation that is 
coupled to the differential equation of the other client. Let NN ∈  denote the number of time 
steps and let {1, , }k N∈   denote the time steps. We will use the subscripts 1 and 2 to 
denote the state variable and the function that computes the next state variable of the 
simulator 1 and 2, respectively. 

The simulator 1 computes, for {1, , 1}k N∈ − the sequence 

x1(k+1) = f1(x1(k), x2(k)) 

and, similarly, the simulator 2 computes the sequence 

x2(k+1) = f2(x2(k), x1(k)) 

with initial conditions x1(0) = x1,0 and x2(0) = x2,0. 
To advance from time k to k+1, each simulator uses its own time integration algorithm. At the 
end of the time step, the simulator 1 sends the new state x1(k+1) to the BCVTB and it 
receives the state x2(k+1) from the BCVTB. The same procedure is done with the simulator 2. 
The BCVTB synchronizes the data in such a way that it does not matter which of the two 
simulators is called first.  
In comparison to numerical methods of differential equations, this scheme is identical to an 
explicit Euler integration, which is an integration algorithm that computes for an ordinary 
differential equation with specified initial values, 

dx/dt = h(x),  

http://simulationresearch.lbl.gov/bcvtb
http://www.modelisar.com/


External Interface(s)  BCVTB Examples 

9/27/12 2  

x(0)  = x0, 

on the time interval t ∈ [0, 1], the following sequence: 

Step 0: Initialize counter k=0 and number of steps NN ∈ . 
 Set initial state x(k) = x0 and set time step ∆t = 1/N. 
Step 1: Compute new state x(k+1) = x(k) + h(x(k)) ∆t. 
 Replace k by k+1. 
Step 2: If k=N stop, else go to Step 1. 

In the situation where the differential equation is solved using co-simulation, the above 
algorithm becomes 

Step 0: Initialize counter k=0 and number of steps NN ∈ . 
 Set initial state x1(k) = x1,0 and x2(k) = x2,0. Set the time step ∆t = 1/N. 
Step 1: Compute new states 

  x1(k+1) = x1(k) + f1(x1(k), x2(k)) ∆t, and 
  x2(k+1) = x2(k) + f2(x2(k), x1(k)) ∆t. 

 Replace k by k+1. 
Step 2: If k=N stop, else go to Step 1. 

This algorithm is implemented in the BCVTB. Note that there is no iteration between the two 
simulators. 

BCVTB Examples 

Architecture of System 

The figure below shows the architecture of the connection between EnergyPlus and the 
BCVTB. The black objects are explained in this application guide, whereas the grey items are 
not specific to EnergyPlus and are explained in the BCVTB documentation. The BCVTB 
connects to the external interface in EnergyPlus. In the external interface, the input/output 
signals that are exchanged between the BCVTB and EnergyPlus are mapped to EnergyPlus 
objects. The subject of this External Interface Application Guide is how to configure this 
mapping and how to use these objects. For a detailed explanation of the grey items, we refer 
to the BCVTB documentation. 



External Interface(s)  BCVTB Examples 

9/27/12 3  

 
Figure 1: Architecture of the BCVTB with the EnergyPlus client (black) and other clients (grey). 

The external interface can map to three EnergyPlus input objects called 
ExternalInterface:Schedule, ExternalInterface:Actuator and ExternalInterface:Variable. The 
ExternalInterface:Schedule can be used to overwrite schedules, and the other two objects 
can be used in place of Energy Management System (EMS) actuators and EMS variables. 
The objects have similar functionality as the objects Schedule:Compact, 
EnergyManagementSystem:Actuator and EnergyManagementSystem:GlobalVariable, except 
that their numerical value is obtained from the external interface at the beginning of each 
zone time step, and will remain constant during this zone time step. 
Compared to EnergyManagementSystem:Actuator, the object ExternalInterface:Actuator has 
an optional field called “initial value.” If a value is specified for this field, then this value will be 
used during the warm-up period and the system sizing. If unspecified, then the numerical 
value for this object will only be used during the time stepping. Since actuators always 
overwrite other objects (such as a schedule), all these objects have values that are defined 
during the warm-up and the system sizing even if no initial value is specified. For the objects  
ExternalInterface:Schedule and ExternalInterface:Variable, the field “initial value” is required, 
and its value will be used during the warm-up period and the system-sizing. 
ExternalInterface:Variable is a global variable from the point of view of the EMS language. 
Thus, it can be used within any EnergyManagementSystem:Program in the same way as an 
EnergyManagementSystem:GlobalVariable or an EnergyManagementSystem:Sensor can be 
used. 
Although variables of type ExternalInterface:Variable can be assigned to 
EnergyManagmentSystem:Actuator objects, for convenience, there is also an object called 
ExternalInterface:Actuator. This object behaves identically to 
EnergyManagmentSystem:Actuator, with the following exceptions: 
 Its value is assigned by the external interface. 
 Its value is fixed during the zone time step because this is the synchronization time step 

for the external interface. 
The external interface can also map to the EnergyPlus objects Output:Variable and 
EnergyManagementSystem:OutputVariable. These objects can be used to send data from 
EnergyPlus to the BCVTB at each zone time step. 
We will now present examples that use all of these objects. The following table shows which 
EnergyPlus features are used in the examples, which are all distributed with the BCVTB 
installation that can be obtained from the LBNL web site. Note – these examples are NOT 
distributed with EnergyPlus installation because you need the special software to make them 
work. 



External Interface(s)  BCVTB Examples 

9/27/12 4  

Table 1. Overview of the EnergyPlus objects used in Examples 

 Example 1 Example 2 Example 3 
ExternalInterface:Schedule x   
ExternalInterface:Actuator  X  
ExternalInterface:Variable   x 
Output:Variable x X x 
EnergyManagementSystem:OutputVariable   x 

To configure the data exchange, the following three steps are required from the user: 
1) Create an EnergyPlus idf file. 
2) Create an xml file that defines the mapping between EnergyPlus and BCVTB variables. 
3) Create a Ptolemy model. 
These steps are described in the examples below. Prior to discussing the examples, we will 
explain the syntax of the xml configuration file that defines how data are mapped between the 
external interface and EnergyPlus. 

XML Syntax 

This section describes the syntax of the xml file that configures the data mapping between 
EnergyPlus and the external interface. 
The data mapping between EnergyPlus and the external interface is defined in an xml file 
called variables.cfg. This file needs to be in the same directory as the EnergyPlus idf file. 
The file has the following header: 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<!DOCTYPE BCVTB-variables SYSTEM "variables.dtd"> 

Following the header is an element of the form 
<BCVTB-variables> 
 
</BCVTB-variables> 

This element will contain child elements that define the variable mapping. In between the 
element tags, a user needs to specify how the exchanged data is mapped to EnergyPlus 
objects. Hence, the order of these elements matter, and it need to be the same as the order 
of the elements in the input and output signal vector of the BCVTB actor that calls 
EnergyPlus. The exchanged variables are declared in elements that are called “variable” and 
have an attribute “source.” As described above, the external interface can send data to 
ExternalInterface:Schedule, ExternalInterface:Actuator, ExternalInterface:Variable. For these 
objects, the “source” attribute needs to be set to “Ptolemy,” because they are computed in 
Ptolemy. The xml elements for these objects look as follows: 
For ExternalInterface:Schedule, use 
<variable source="Ptolemy"> 
    <EnergyPlus schedule="NAME"/> 
  </variable> 

where NAME needs to be the EnergyPlus schedule name. For ExternalInterface:Actuator, 
use 
<variable source="Ptolemy"> 
    <EnergyPlus actuator="NAME" /> 
  </variable> 

where NAME needs to be the EnergyPlus actuator name. For ExternalInterface:Variable, use 
  <variable source="Ptolemy"> 
    <EnergyPlus variable="NAME"/> 



External Interface(s)  BCVTB Examples 

9/27/12 5  

  </variable> 

where NAME needs to be the EnergyPlus Energy Runtime Language (Erl) variable name. 
The external interface can also read data from any Output:Variable and 
EnergyManagementSystem:OutputVariable. For these objects, set the “source” attribute to 
“EnergyPlus,” because they are computed by EnergyPlus. The read an Output:Variable, use 
  <variable source="EnergyPlus"> 
    <EnergyPlus name="NAME" type="TYPE"/>   
  </variable> 

where NAME needs to be the EnergyPlus “Variable Name” (such as ZONE/SYS AIR TEMP) 
and TYPE needs to be the EnergyPlus “Key Value” (such as ZONE ONE). To read an 
EnergyManagementSystem:OutputVariable, use 
<variable source="EnergyPlus"> 
    <EnergyPlus name="EMS" type="TYPE"/> 
</variable> 

i.e., the attribute “name” must be EMS, and the attribute “type” must be set to the EMS 
variable name. 
Complete examples of these xml files are presented below. 

Example 1: Interface using ExternalInterface:Schedule 

In this example, a controller that is implemented in the BCVTB computes the room 
temperature set points for cooling and heating. The example can be found in the BCVTB 
distribution in the folder examples/ePlusX-schedule, where X stands for the EnergyPlus 
version number. 
Suppose we need to send from the BCVTB to EnergyPlus a schedule value, and from 
EnergyPlus to the BCVTB an output variable at each zone time step. This can be 
accomplished by using an object of type ExternalInterface:Schedule and an object of type 
Output:Variable. 
To interface EnergyPlus using the EMS feature, the following three items are needed: 
 An object that instructs EnergyPlus to activate the external interface. 
 EnergyPlus objects that write data from the external interface to the EMS. 
 A configuration file to configure the data exchange.  

Creating the EnergyPlus idf file 

The EnergyPlus idf file contains the following objects to activate and use the external 
interface: 
 An object that instructs EnergyPlus to activate the external interface.  
 An object of type ExternalInterface:Schedule. The external interface will write its values to 

these objects at each zone time-step.  
 Objects of type Output:Variable. Any EnergyPlus output variable can be read by the 

external interface.  
The code below shows how to declare these objects. 
To activate the external interface, we use: 

ExternalInterface,           !- Object to activate the external interface 
 PtolemyServer;              !- Name of external interface 

To enter schedules to which the external interface writes, we use: 
! Cooling schedule. This schedule is set directly by the external interface. 
! During warm-up and system-sizing, it is fixed at 24 degC. 
  ExternalInterface:Schedule, 
    TSetCoo,                 !- Name 
    Temperature,             !- ScheduleType 
    24;                      !- Initial value, used during warm-up 



External Interface(s)  BCVTB Examples 

9/27/12 6  

 
! Heating schedule. This schedule is set directly by the external interface. 
! During warm-up and system-sizing, it is fixed at 20 degC. 
  ExternalInterface:Schedule, 
    TSetHea,                 !- Name 
    Temperature,             !- ScheduleType 
    20;                      !- Initial value, used during warm-up 

These schedules can be used as other EnergyPlus schedules. In this example, they are 
used to change a thermostat setpoint: 

ThermostatSetpoint:DualSetpoint, 
    DualSetPoint,            !- Name 
    BCVTB-SP-TH,             !- Heating Setpoint Temperature Schedule Name 
    BCVTB-SP-TC;             !- Cooling Setpoint Temperature Schedule Name 
 

We also want to read from EnergyPlus output variables, which we declare as 
Output:Variable, 
    TSetHea,        !- Key Value 
    Schedule Value, !- Variable Name 
    TimeStep;       !- Reporting Frequency 
 
Output:Variable, 
    TSetCoo,        !- Key Value 
    Schedule Value, !- Variable Name 
    TimeStep;       !- Reporting Frequency 

To specify that data should be exchanged every 15 minutes of simulation time, enter in the idf 
file the section 
  Timestep, 
    4;          !- Number of Timesteps per Hour 

Creating the configuration file 

Note that we have not yet specified the order of the elements in the signal vector that is 
exchanged between EnergyPlus and the BCVTB. This information is specified in the file 
variables.cfg. The file variables.cfg needs to be in the same directory as the EnergyPlus idf 
file. For the objects used in the section above, the file looks like 
<?xml version="1.0" encoding="ISO-8859-1"?> 
<!DOCTYPE BCVTB-variables SYSTEM "variables.dtd"> 
<BCVTB-variables> 
  <!-- The next two elements send the set points to E+ --> 
  <variable source="Ptolemy"> 
    <EnergyPlus schedule="TSetHea"/> 
  </variable> 
  <variable source="Ptolemy"> 
    <EnergyPlus schedule="TSetCoo"/> 
  </variable> 
  <!-- The next two elements receive the outdoor and zone air temperature 
from E+ --> 
  <variable source="EnergyPlus"> 
   <EnergyPlus name="ENVIRONMENT" type="OUTDOOR DRY BULB"/>   
  </variable> 
  <variable source="EnergyPlus"> 
    <EnergyPlus name="ZSF1" type="ZONE/SYS AIR TEMPERATURE"/> 
  </variable> 
  <!-- The next two elements receive the schedule value as an output from E+ 
--> 
  <variable source="EnergyPlus"> 
    <EnergyPlus name="TSetHea" type="Schedule Value"/> 
  </variable> 
  <variable source="EnergyPlus"> 



External Interface(s)  BCVTB Examples 

9/27/12 7  

    <EnergyPlus name="TSetCoo" type="Schedule Value"/> 
  </variable> 
</BCVTB-variables> 

This file specifies that the actor in the BCVTB that calls EnergyPlus has an input vector 
with two elements that are computed by Ptolemy (Ptolemy is the name of the software on 
which the BCVTB is based) and sent to EnergyPlus, and that it has an output vector with 
four elements that are computed by EnergyPlus and sent to Ptolemy. The order of the 
elements in each vector is determined by the order in the above XML file. Hence, the 
input vector that contains the signals sent to EnergyPlus has elements 

TSetHea 
  TSetCoo 

and the output vector that contains values computed by EnergyPlus has elements 
Environment (Outdoor drybulb temperature) 
  ZSF1 (ZONE/SYS AIR TEMPERATURE) 
  TSetHea (Schedule Value) 
  TSetCoo (Schedule Value) 

Creating the Ptolemy model 

To start EnergyPlus from the BCVTB, you will need to create a Ptolemy model. 
The model bcvtb/example/ePlus40-schedule/system-windows.xml that is part of the 
BCVTB installation and that is shown below may be used as a starting point. (For Mac 
and Linux, use the file system.xml.) In this example, the time step is 15 minutes and the 
simulation period is four days. 

 
Figure 2: System model in the BCVTB. 

In this model, the Simulator actor that calls EnergyPlus is configured for Windows as 
follows: 



External Interface(s)  BCVTB Examples 

9/27/12 8  

 
Figure 3: Configuration of the Simulator actor that calls EnergyPlus on Windows. 

Hence, it calls the file “RunEPlus.bat,” with arguments “EMSWindowShadeControl 
USA_IL_Chicago-OHare.Intl.AP.725300_TMY3.” The working directory is the current 
directory and the console output is written to the file simulation.log. If EnergyPlus does 
not communicate with the BCVTB within 10 seconds, the BCVTB will terminate the 
connection. (See http://simulationresearch.lbl.gov/bcvtb for more detailed documentation 
about how to configure a BCVTB model that communicates with other programs.) 
For Mac OS X and Linux, the configuration is similar: 

 
Figure 4: Configuration of the Simulator actor that calls EnergyPlus on Mac OS X and on Linux. 

This completes the configuration. 

Example 2: Interface using ExternalInterface:Actuator 

In this example, a shading controller with a finite state machine is implemented in the 
BCVTB. Inputs to the controller are the outside temperature and the solar radiation that is 
incident on the window. The output of the controller is the shading actuation signal. 
This example describes how to set up EnergyPlus to exchange data between the BCVTB and 
EnergyPlus, using an Energy Management System (EMS) actuator. The example can be 
found in the BCVTB distribution in the folder examples/ePlusX-actuator, where X stands for 
the EnergyPlus version number. 
The object of type ExternalInterface:Actuator behaves identically to 
EnergyManagmentSystem:Actuator, with the following exceptions: 
 Its value is assigned by the external interface. 
 Its value is fixed during the zone time step because this is the synchronization time step 

for the external interface. 
To interface EnergyPlus using the EMS feature, the following three items are needed: 
1) An object that instructs EnergyPlus to activate the external interface. 
2) EnergyPlus objects that write data from the external interface to the EMS. 
3) A configuration file to configure the data exchange.  

http://simulationresearch.lbl.gov/bcvtb


External Interface(s)  BCVTB Examples 

9/27/12 9  

Creating the EnergyPlus idf file 

The code below shows how to set up an EnergyPlus file that uses 
EnergyManagmentSystem:Actuator. To activate the external interface, we use: 

ExternalInterface,           !- Object to activate the external interface 
 PtolemyServer;              !- Name of external interface 

To declare an actuator that changes the control status of the window with name 
“Zn001:Wall001:Win001”, we use: 

ExternalInterface:Actuator, 
    Zn001_Wall001_Win001_Shading_Deploy_Status,  !- Name 
    Zn001:Wall001:Win001,    !- Actuated Component Unique Name 
    Window Shading Control,  !- Actuated Component Type 
    Control Status,          !- Actuated Component Control Type 
     ;                       ! initial value 

Thus, the entry is identical with EnergyManagmentSystem:Actuator, except for the 
additional optional field that specifies the initial value. If unspecified, then the actuator will 
only be used during the time stepping, but not during the warm-up and the system sizing. 
Since actuators always overwrite other objects (such as a schedule), all these objects 
have values that are defined during the warm-up and the system sizing even if no initial 
value is specified. 
We also want to read from EnergyPlus the outdoor temperature, the zone air 
temperature, the solar radiation that is incident on the window, and the fraction of time 
that the shading is on. Thus, we declare the output variables 

Output:Variable, 
   Environment,                            !- Key Value 
   Outdoor Dry Bulb,                       !- Variable Name 
   timestep;                               !- Reporting Frequency 
 
Output:Variable, 
   *,                                      !- Key Value 
   Zone Mean Air Temperature,              !- Variable Name 
   timestep;                               !- Reporting Frequency 
 
Output:Variable, 
   Zn001:Wall001:Win001,                   !- Key Value 
   Surface Ext Solar Incident,             !- Variable Name 
   timestep;                               !- Reporting Frequency 
 
Output:Variable, 
   *,                                      !- Key Value 
   Fraction of Time Shading Device Is On,  !- Variable Name 
   timestep;                               !- Reporting Frequency 

To specify that data should be exchanged every 10 minutes of simulation time, we enter 
in the idf file the section 

  Timestep, 
    6;          !- Number of Timesteps per Hour 

Creating the configuration file 

Note that we have not yet specified the order of the elements in the signal vector that is 
exchanged between EnergyPlus and the BCVTB. This information is specified in the file 
variables.cfg. The file variables.cfg needs to be in the same directory as the EnergyPlus 
idf file. For the objects used in the section above, the file looks like 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<!DOCTYPE BCVTB-variables SYSTEM "variables.dtd"> 
<BCVTB-variables> 
  <variable source="EnergyPlus"> 
    <EnergyPlus name="ENVIRONMENT" type="OUTDOOR DRY BULB"/>   



External Interface(s)  BCVTB Examples 

9/27/12 10  

  </variable> 
  <variable source="EnergyPlus"> 
    <EnergyPlus name="WEST ZONE" type="Zone Mean Air Temperature"/> 
  </variable> 
  <variable source="EnergyPlus"> 
    <EnergyPlus name="Zn001:Wall001:Win001" type="Surface Ext Solar 
Incident"/> 
  </variable> 
  <variable source="EnergyPlus"> 
    <EnergyPlus name="Zn001:Wall001:Win001" type="Fraction of Time Shading 
Device Is On"/> 
  </variable> 
  <variable source="Ptolemy"> 
    <EnergyPlus actuator="Zn001_Wall001_Win001_Shading_Deploy_Status" /> 
  </variable> 
</BCVTB-variables> 

This file specifies that the actor in the BCVTB that calls EnergyPlus has an input vector 
with one element that will be written to the actuator, and that it has an output vector with 
four elements that are computed by EnergyPlus and sent to Ptolemy. The order of the 
elements in each vector is determined by the order in the above XML file. Hence, the 
output vector that contains the signals computed by EnergyPlus has elements 

  ENVIRONMENT (OUTDOOR DRY BULB) 
  WEST ZONE (Zone Mean Air Temperature) 
  Zn001:Wall001:Win001 (Surface Ext Solar Incident) 
  Zn001:Wall001:Win001 (Fraction of Time Shading Device Is On) 

The configuration of the Ptolemy model is identical to the configuration in Example 1. 

Example 3: Interface using ExternalInterface:Variable 

This example implements the same controller as the Example 2. However, the interface with 
EnergyPlus is done using an external interface variable instead of an external interface 
actuator. In addition, the example uses an EnergyManagementSystem:OutputVariable to set 
up data that will be read by the external interface. 
Similarly to EnergyManagementSystem:GlobalVariable, an ExternalInterface:Variable can be 
used in any EnergyManagementSystem:Program. The subject of this example is to illustrate 
how an ExternalInterface:Variable can be set up for use in an 
EnergyManagementSystem:Program. The example can be found in the BCVTB distribution in 
the folder examples/ePlusX-variable, where X stands for the EnergyPlus version number. 
To interface EnergyPlus using an external interface variable, the following items are needed: 
 An object that instructs EnergyPlus to activate the external interface. 
 EnergyPlus objects that write data from the external interface to the EMS. 
 A configuration file to configure the data exchange.  

Creating the EnergyPlus idf file 

To write data from the external interface to an EnergyPlus EMS variable, an EnergyPlus 
object of the following entry may be used in the idf file: 

ExternalInterface,           !- Object to activate the external interface 
   PtolemyServer;            !- Name of external interface 
 
  ExternalInterface:Variable, 
    yShade,                  !- Name of Erl variable 
    1;                       !- Initial value 

During the warm-up period and the system-sizing, the variable will be set to its initial 
value. Afterwards, the value will be assigned from the external interface at each 
beginning of a zone time step and kept constant during the zone time step. From the 
point of view of the EMS language, ExternalInterface:Variable can be used like any global 



External Interface(s)  BCVTB Examples 

9/27/12 11  

variable. Thus, it can be used within any EnergyManagementSystem:Program in the 
same way as an EnergyManagementSystem:GlobalVariable or an 
EnergyManagementSystem:Sensor. 
This idf section above activates the external interface and declares a variable with name 
yShade that can be used in an Erl program to actuate the shading control of the window 
“Zn001:Wall001:Win001” as follows: 

! EMS program. The first assignments sets the shading status and converts it 
into the 
!              EnergyPlus signal (i.e., replace 1 by 6). 
!              The second assignment sets yShade to  
!              an EnergyManagementSystem:OutputVariable 
!              which will be read by the external interface. 
  EnergyManagementSystem:Program, 
    Set_Shade_Control_State,          !- Name 
    Set Shade_Signal = 6*yShade,      !- Program Line 1 
    Set Shade_Signal_01 = yShade+0.1; !- Program Line 2 
 
! Declare an actuator to which the EnergyManagementSystem:Program will write 
  EnergyManagementSystem:Actuator, 
    Shade_Signal,  !- Name 
    Zn001:Wall001:Win001,             !- Actuated Component Unique Name 
    Window Shading Control,           !- Actuated Component Type 
    Control Status;                   !- Actuated Component Control Type 
 
! Declare a global variable to which the EnergyManagementSystem:Program will 
write 
  EnergyManagementSystem:GlobalVariable, 
    Shade_Signal_01;                  !- Name of Erl variable 
 

We want to read from EnergyPlus the outdoor temperature, the zone air temperature and 
the solar radiation that is incident on the window. Thus, we declare 

Output:Variable, 
   Environment,         !- Key Value 
   Outdoor Dry Bulb,    !- Variable Name 
   timestep;            !- Reporting Frequency 
 
  Output:Variable, 
  *,                          !- Key Value 
  Zone Mean Air Temperature,  !- Variable Name 
  timestep;                   !- Reporting Frequency 
 
  Output:Variable, 
  Zn001:Wall001:Win001,       !- Key Value 
  Surface Ext Solar Incident, !- Variable Name 
  timestep;                   !- Reporting Frequency 

In addition, we want to output the variable “Erl Shading Control Status” that has been set 
up as 

! Declare an output variable. This variable is equal to the shading signal + 
0.1 
! It will be read by the external interface to demonstrate how to receive 
variables. 
  EnergyManagementSystem:OutputVariable, 
    Erl Shading Control Status,  !- Name 
    Shade_Signal_01,             !- EMS Variable Name 
    Averaged,                    !- Type of Data in Variable 
    ZoneTimeStep;                !- Update Frequency 

To specify that data should be exchanged every 10 minutes of simulation time, enter in 
the idf file the section 



External Interface(s) Coupling EnergyPlus with Functional Mock-up Units for co-simulation 

9/27/12 12  

  Timestep, 
    6;          !- Number of Timesteps per Hour 

Creating the configuration file 

Note that we have not yet specified the order of the elements in the signal vector that is 
exchanged between EnergyPlus and the BCVTB. This information is specified in the file 
variables.cfg. The file variables.cfg needs to be in the same directory as the EnergyPlus 
idf file. For the objects used in the section above, the file looks like 

<?xml version="1.0" encoding="ISO-8859-1"?> 
<!DOCTYPE BCVTB-variables SYSTEM "variables.dtd"> 
<BCVTB-variables> 
  <variable source="Ptolemy"> 
    <EnergyPlus variable="yShade"/> 
  </variable> 
  <variable source="EnergyPlus"> 
    <EnergyPlus name="ENVIRONMENT" type="OUTDOOR DRY BULB"/>   
  </variable> 
  <variable source="EnergyPlus"> 
    <EnergyPlus name="WEST ZONE" type="Zone Mean Air Temperature"/> 
  </variable> 
  <variable source="EnergyPlus"> 
    <EnergyPlus name="Zn001:Wall001:Win001" type="Surface Ext Solar 
Incident"/> 
  </variable> 
  <variable source="EnergyPlus"> 
    <EnergyPlus name="EMS" type="Erl Shading Control Status"/> 
  </variable> 
</BCVTB-variables> 

This file specifies that the actor in the BCVTB that calls EnergyPlus has an input vector 
with one element that will be written to the actuator, and that it has an output vector with 
four elements that are computed by EnergyPlus and sent to Ptolemy. The order of the 
elements in each vector is determined by the order in the above XML file. Note that the 
fourth element has the name “EMS” because it is an 
EnergyManagementSystem:OutputVariable. Hence, the output vector that contains the 
signals computed by EnergyPlus has elements 

  ENVIRONMENT (OUTDOOR DRY BULB) 
  WEST ZONE (Zone Mean Air Temperature) 
  Zn001:Wall001:Win001 (Surface Ext Solar Incident) 
  EMS (Erl Shading Control Status) 

The configuration of the Ptolemy model is identical to the configuration in the previous 
examples. 

Coupling EnergyPlus with Functional Mock-up Units for co-simulation 

The Functional Mock-up Unit (FMU) for co-simulation import for EnergyPlus allows 
EnergyPlus to conduct co-simulation with various programs that are packaged as FMUs. An 
FMU is a component which implements the Functional Mock-up Interface (FMI) standard 
(http://www.modelisar.com). 
An FMU is distributed in the form of a zip file that may contain physical models, model 
descriptions, source code, and executable programs for various platforms. The FMU for co-
simulation import provides EnergyPlus with a standard interface to conduct and control co-
simulation with an arbitrary number of FMUs without any middle-ware, such as the Building 
Controls Virtual Test Bed (BCVTB Documentation, 2011). 
The FMU for co-simulation import allows coupling of continuous-time and discrete-time 
models exported from different simulation programs. In the current implementation, 

http://www.modelisar.com/


External Interface(s) Coupling EnergyPlus with Functional Mock-up Units for co-simulation 

9/27/12 13  

EnergyPlus is implemented as the co-simulation master. It controls the data exchange 
between the subsystems and the synchronization of all slave simulation programs. 
The FMU for co-simulation import enables the direct link between the EnergyPlus kernel and 
other simulation tools. It will make the co-simulation easier to conduct as no middle-ware is 
involved. This direct link will decrease run-time by eliminating the transaction layer. In 
addition, by separating the co-simulation interface from the EnergyPlus kernel, the FMU 
interface is reusable when EnergyPlus is updated. Furthermore, the FMU contains 
executable files that have the same interface to EnergyPlus regardless of their original 
programming environment. Some commercial tools allow running their FMU without licensing 
requirement. 
Notes:  
1) The current implementation of FMU for co-simulation is only supported on Windows and 

Linux. 
2) FMUs must be in a folder to which the user has write access.  
Data exchange between EnergyPlus and FMUs 
Prior to describing the data exchange between EnergyPlus and FMUs, some definitions and 
terminologies used in the remainder of this document will be introduced. 
A variable of a system described by a system of differential algebraic equations (DAE) is 
defined as differential variable if its derivatives are present in the DAE. A variable of a system 
described by a system of DAE is defined as algebraic if its derivatives do not appear explicitly 
in the DAE (Fabian et al., 2008). 

 
Figure 5: System with two variables that could be either differential or algebraic variables. 

Because in subsequent discussions, it will be distinguished between algebraic and differential 
variables, a notation for different system of equations that involve algebraic and differential 
variables will be introduced. Let Nq∈ , then 

• If 1x and 2x  are differential variables, then the system is 

1 1 2 2( , , , , , ) 0F x x x x u t =   with F: ℝn x ℝn x ℝm x ℝm x ℝq x ℝ → ℝn+m.  

 If 1x is a differential variable and 2x  is an algebraic variable, then the system is 

1 1 2( , , , , ) 0G x x x u t =  with G: ℝn x ℝn x ℝm x ℝq x ℝ → ℝn+m. 

 If 1x  is an algebraic variable and 2x  is a differential variable, then the system is 

1 2 2( , , , , ) 0H x x x u t =  with H: ℝn x ℝm x ℝm x ℝq x ℝ → ℝn+m. 

 If 1x  is an algebraic variable and 2x  is an algebraic variable, then the system is 

1 2( , , , ) 0I x x u t =  with I: ℝn x ℝm x ℝq x ℝ → ℝn+m. 

Figure 6 shows a case where an FMU is linked to an EnergyPlus model for co-simulation. 
The FMU and EnergyPlus could be linked through differential or algebraic variables.  



External Interface(s) Coupling EnergyPlus with Functional Mock-up Units for co-simulation 

9/27/12 14  

 
Figure 6: System with one FMU linked to EnergyPlus. 

Table 2 shows the different system configurations that are possible.  

 In the first case, the variable 1x  and 2x  are differential variables in both systems. 

 In the second case, the variable 1x  is a differential variable and the variable 2x  is an 
algebraic variable. 

 In the third case, the variable 1x  is an algebraic variable and the variable 2x  is a 
differential variable. 

 In the fourth case, the variable 1x  is an algebraic variable and the variable 2x is an 
algebraic variable. 

In the current implementation, it will be focused on the first and the second cases since the 
third and the fourth cases will constrain the FMU to be solved numerically in the iteration 
solver loop of EnergyPlus. This will necessitate the ability of the FMU to reject time steps 
(Modelisar, 2010) which is currently not implemented in the EnergyPlus FMU for co-
simulation import. Applications for case 1 and 2 are described in the next sections. 

Table 2: Use cases with different system configurations 

Case  EnergyPlus FMU (e.g. from Modelica) 

(1) Model1 (Differential variable) Model2 (Differential variable) 

(2) Model1 (Differential variable) Model2 (Algebraic variable) 

(3) Model1 (Algebraic variable) Model2 (Differential variable) 

(4) Model1 (Algebraic variable) Model2 (Algebraic variable) 

Case 1: Linking two systems through differential variables 

This case could be for an application where a wall with a phase change material (PCM) is 
modeled in an FMU and is linked to a room model in EnergyPlus. The room air temperature 
is the differential variable in EnergyPlus and the temperature of the wall with PCM is the 
differential variable in the FMU. Each system solves a differential equation that is connected 



External Interface(s) Coupling EnergyPlus with Functional Mock-up Units for co-simulation 

9/27/12 15  

to the differential equation of the other system. For simplicity, we assume that y1(.) = x1(.) and 
y2(.) = x2(.).The systems are described by the ordinary differential equations 

dx1/dt = f1(x1, x2), with x1(0) = x1,0 , 

dx2/dt = f2(x2, x1), with x2(0) = x2,0 . 

Let NN ∈  denote the number of time steps and let tk with {1, , }k N∈   denote the time 
steps. We will use the subscripts 1 and 2 to denote the variables and the functions that 
compute the next state variable of the simulator 1 and 2, respectively. 

The first system computes, for {0, ... , 1}k N∈ − and some 1F : ℝn x ℝm x ℝ x ℝ → ℝn, the 
sequence 

x1(tk+1) = 1F (x1(tk), x2(tk), tk, tk+1) 

and, similarly, the simulator 2 computes for some 2F : ℝm x ℝn x ℝ x ℝ → ℝm the sequence 

x2(tk+1) = 2F (x2(tk), x1(tk), tk, tk+1) 

with initial conditions x1(0) = x1,0 and x2(0) = x2,0. 1(.,.,.,.)F  and 2 (.,.,.,.)F  are the functions 
that are used to compute the value of the state variables at the new time step 
To advance from time tk to tk+1, each system uses its own time integration algorithm. At the 
end of the time step, EnergyPlus sends the new state x1(tk+1) to the FMU and it receives the 
state x2(tk+1) from the FMU. The same procedure is done with the FMU. 

Case 2: Linking two systems through algebraic and differential variables 

This case could be for an application where a fan is modeled in an FMU and is linked to a 
room model in EnergyPlus. The room temperature is the differential variable in EnergyPlus 
and the pressure difference of the fan is the algebraic variable in the FMU. For simplicity, we 
assume that y1(.) = x1(.) and y2(.) = x2(.). In this application, the systems are described by the 
following equations 

dx1/dt = g1(x1, x2), with x1(0) = x1,0, 

0 = g2(x2, x1). 

Let NN ∈  denote the number of time steps and let tk with {1, , }k N∈   denote the time 
steps. We use the same subscripts 1 and 2 as for the first case to denote the variable and the 
function that computes the next variable of the simulator 1 and 2, respectively. 

The first system computes, for }1,,0{ −∈ Nk  and some 1
~G : ℝn x ℝm x ℝ x ℝ → ℝn, the 

sequence 

x1(tk+1) = 1G (x1(tk), x2(tk), tk, tk+1) 

and, similarly, the simulator 2 computes for some 2
~G : ℝm x ℝn x ℝ → ℝm the sequence 

x2(tk+1) = 2G (x2(tk+1), x1(tk+1), tk+1) 



External Interface(s)  FMU Examples 

9/27/12 16  

with initial condition x1(0) = x1,0. 1(.,.,.,.)G and 2 (.,.,.)G  are the functions that compute the 
value of the variables at the new time step. 
To advance from time tk to tk+1, each system uses its own time integration algorithm. At the 
end of the time step, EnergyPlus sends the new value x1(tk+1) to the FMU and it receives the 
value x2(tk+1) from the FMU. The same procedure is done with the FMU.  

Requirements 

The current implementation for linking EnergyPlus with the FMUs has the following 
requirements: 
 The data exchange between EnergyPlus and the FMUs is done at the zone time step of 

EnergyPlus. 
 Each FMU is linked to EnergyPlus only through a differential variable in EnergyPlus (see 

Figure 7 for one FMU).   

 
Figure 7: System with one FMU linked to EnergyPlus. 

 Two or multiple FMUs are linked together only through differential variables in 
EnergyPlus (see Figure 8 for two FMUs). 

 
Figure 8: System with two FMUs linked to EnergyPlus. 

FMU Examples 

Architecture of the FMU for co-simulation Import  

Figure 9 shows the architecture of the connection between EnergyPlus and two FMUs. 
EnergyPlus imports the FMUs that connect to its external interface. These FMUs are 
generated by external simulation environments that implement the FMI Application 
Programming Interface (API) for co-simulation. See http://www.modelisar.com/tools.html for a 
list of programs that export FMUs. In the external interface, the input/output signals that are 
exchanged between the FMUs and EnergyPlus are mapped to EnergyPlus objects. The 
subject of this External Interface Application Guide is how to configure this mapping and how 
to use these objects. 

http://www.modelisar.com/tools.html


External Interface(s)  FMU Examples 

9/27/12 17  

 
Figure 9: Architecture of the FMU for co-simulation import. 

The external interface can map to three EnergyPlus input objects called 
 ExternalInterface:FunctionalMockupUnitImport:To:Schedule 
 ExternalInterface:FunctionalMockupUnitImport:To:Actuator 
 ExternalInterface:FunctionalMockupUnitImport:To:Variable. 
The ExternalInterface:FunctionalMockupUnitImport:To:Schedule can be used to overwrite 
schedules, and the other two objects can be used in place of Energy Management System 
(EMS) actuators and EMS variables. The objects have similar functionality as the objects 
Schedule:Compact, EnergyManagementSystem:Actuator and 
EnergyManagementSystem:GlobalVariable, except that their numerical value is obtained 
from the external interface at the beginning of each zone time step, and will remain constant 
during this zone time step. 
The external interface also uses the 
ExternalInterface:FunctionalMockupUnitImport:From:Variable object which  maps to 
EnergyPlus objects Output:Variable and EnergyManagementSystem:OutputVariable to send 
data from EnergyPlus to FMUs at each zone time step. 
We will now present examples that use all of these objects. The following table shows which 
EnergyPlus features are used in the examples.  

Table 3. Overview of the EnergyPlus objects used in Examples 

 Example 
1 

Example 
2 

Example 
3 

ExternalInterface:FunctionalMockupUnitImport:From:Variable x x x 

ExternalInterface:FunctionalMockupUnitImport:To:Schedule x   
ExternalInterface:FunctionalMockupUnitImport:To:Actuator  x  
ExternalInterface:FunctionalMockupUnitImport:To:Variable   x 
Output:Variable x x x 

Prior to discussing the examples, we will explain the pre-processing steps that are required to 
prepare EnergyPlus to be linked to FMUs for co-simulation. 

Workflow of the FMU for co-simulation import  

To use the FMU for co-simulation import, there are two important steps: pre-processing and 
co-simulation.  The pre-processing step generates a section of an EnergyPlus input file (*.idf) 
that can be used to configure the FMU for co-simulation import. The input file defines the 
input and output variables for both EnergyPlus and FMUs. The co-simulation step performs 
co-simulation.  



External Interface(s)  FMU Examples 

9/27/12 18  

Figure 10 shows the work flow for pre-processing. First, an FMU Parser parses the FMU files 
(i.e. xxx.fmu) and generates a temporary EnergyPlus input file (i.e. xxxtmp.idf). The 
temporary EnergyPlus input file is not complete as it just contains information related to the 
FMU, such as names of the FMU and properties of each FMU variable including variable 
name, associated FMU name, input/output type, data type, units and definitions. The user will 
need to manually copy the FMU information from xxxtmp.idf into the EnergyPlus input file 
xxx.idf. The user then needs to modify the xxx.idf file to link the FMU variables with 
EnergyPlus variables. 

 
Figure 10: Work flow for pre-processing. 

FMU Parser 

The FMU parser is a code written in C. It includes Expat (Expat XML Parser, 2011) which 
is a XML parser library written in C. The low level implementation of the function (parser) 
that is used to process an FMU is parser [options] xxx.fmu, where options are as follows:   
 --printidf, prints a temporary xxxtmp.idf with FMU information to be printed,  
 --unpack, unpacks an FMU to be unpacked, and 
 --delete, deletes temporary files related to FMUs. 
An FMU is a zip file which may contain executable programs for specific platforms, 
description files and source code. In the pre-processing step, the FMU Parser will be 
called with the command option --printidf. This will cause the parser to parse the XML file 
with the model description of the FMU and write the FMU information in a format of the 
EnergyPlus input file (*.idf). The parser will check if all the required fields from FMU (see 
next section for details) in the *.idf file are correctly specified. If the check succeeds, the 
parser will successfully close. If the check fails, the parser will close with an error 
message. After the EnergyPlus executable (such as EnergyPlus.exe) terminates, the 
EnergyPlus batch file will delete all the temporary files that may have been generated.   
The FMU Parser is distributed with EnergyPlus and can be found in the PreProcess 
folder (FMUParser) of the EnergyPlus installation. 
 

xxx.fmu

xxxtmp.idf

FMU Parser
parser [options] xxx.fmu

User manually copies the FMU information from xxxtmp.idf into xxx.idf. If more 
than one FMU is used, user needs to combine the FMU information into xxx.idf

xxx.idf



External Interface(s)  FMU Examples 

9/27/12 19  

 
Figure 11: Workflow of FMU parser for pre-processing. 

Example 1: Interface using 
ExternalInterface:FunctionalMockupUnitImport:To:Schedule 

In this example, an HVAC system implemented in an FMU (MoistAir.fmu) is linked to a room 
model in EnergyPlus. The HVAC system computes sensible and latent heat gain required for 
maintaining a set point temperature. The FMU needs as input the outdoor dry-bulb (TDryBul) 
temperature, outdoor air relative humidity (outRelHum), the room dry-bulb temperature 
(TRooMea) and the room air relative humidity (rooRelHum). The outputs of the FMU are the 
latent (QLatent) and sensible (QSensible) heat transported across the thermodynamic 
boundary of air inlet and outlet of the thermal zone. 
To link the FMU with EnergyPlus, we need to send from the FMU to EnergyPlus two 
schedule values for the latent and sensible heat gain and from EnergyPlus to the FMU four 
output variables for outdoor dry-bulb temperature, outdoor air relative humidity, room dry-bulb 
temperature and room air relative humidity at each zone time step. This can be accomplished 
by using two objects of type ExternalInterface:FunctionalMockupUnitImport:To:Schedule and 
four objects of type ExternalInterface:FunctionalMockupUnitImport:From:Variable. 
To interface EnergyPlus, the following four items are needed: 
 An object that instructs EnergyPlus to activate the external interface. 
 An object that specifies the FMU and its instances. 
 EnergyPlus objects that read data from EnergyPlus and send to FMU. 
 EnergyPlus objects that read data from FMU and send to EnergyPlus. 

Creating the EnergyPlus idf file 

To create the EnergyPlus idf file the user should: 
 Use the parser to generate a temporary idf. 
 Copy the FMU information from the temporary idf into the full idf file. 
 Modify the full idf file to link the FMU variables with EnergyPlus variables. 

 
The code below shows how the objects will be in the idf. 
To activate the external interface, we use: 
ExternalInterface,           !- Object to activate the external interface 
 FunctionalMockupUnitImport; !- Name of external interface 

To define the FMU that will be linked to EnergyPlus, we use: 
ExternalInterface:FunctionalMockupUnitImport, 

Create a temporary folder in 
current working directory

Unzip FMU to temporary folder

Parse XML & write IDF

Check the IDF file and close 
the FMU Parser



External Interface(s)  FMU Examples 

9/27/12 20  

    MoistAir.fmu,            !- FMU Filename 
    15,                       !- FMU Timeout  
    0;                        !- FMU LoggingOn 

To enter output variables from which the external interface read and send to FMUs, we 
use: 

ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    Environment,               !- EnergyPlus Key Value 
    Outdoor Dry Bulb,          !- EnergyPlus Variable Name 
    MoistAir.fmu,              !- FMU Filename 
    Model1,                    !- FMU Model Name 
    TDryBul;                   !- FMU Model Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    ZONE ONE,                  !- EnergyPlus Key Value 
    Zone Mean Air Temperature,   !- EnergyPlus Variable Name 
    MoistAir.fmu,              !- FMU Filename 
    Model1,                    !- FMU Model Name 
    TRooMea;                   !- FMU Model Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    Environment,               !- EnergyPlus Key Value 
    Outdoor Relative Humidity,   !- EnergyPlus Variable Name 
    MoistAir.fmu,              !- FMU Filename 
    Model1,                    !- FMU Model Name 
    outRelHum;                 !- FMU Model Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    ZONE ONE,                  !- EnergyPlus Key Value 
    Zone Air Relative Humidity,   !- EnergyPlus Variable Name 
    MoistAir.fmu,              !- FMU Filename 
    Model1,                    !- FMU Model Name 
    rooRelHum;                 !- FMU Model Variable Name  

These output variables need to be specified in the idf file: 
Output:Variable, 
    Environment,                 !- Key Value 
    Outdoor Dry Bulb,            !- Variable Name 
    TimeStep;                    !- Reporting Frequency 
 
Output:Variable, 
    ZONE ONE,                    !- Key Value 
    Zone Mean Air Temperature,   !- Variable Name 
    TimeStep;                    !- Reporting Frequency  
 
Output:Variable, 
    Environment,                 !- Key Value 
    Outdoor Relative Humidity,   !- Variable Name 
    TimeStep;                    !- Reporting Frequency 
 
Output:Variable, 
    ZONE ONE,                    !- Key Value 
    Zone Air Relative Humidity,  !- Variable Name  
    TimeStep;                    !- Reporting Frequency 

To enter schedules to which the external interface writes, we use: 
ExternalInterface:FunctionalMockupUnitImport:To:Schedule, 
    FMU_OthEquSen_ZoneOne,   !- EnergyPlus Variable Name 
    Any Number,              !- Schedule Type Limits Names 
    MoistAir.fmu,            !- FMU Filename 
    Model1,                  !- FMU Model Name 
    QSensible,               !- FMU Model Variable Name 
    0;                       !- Initial Value 



External Interface(s)  FMU Examples 

9/27/12 21  

 
ExternalInterface:FunctionalMockupUnitImport:To:Schedule, 
    FMU_OthEquLat_ZoneOne,   !- EnergyPlus Variable Name 
    Any Number,              !- Schedule Type Limits Names 
    MoistAir.fmu,            !- FMU Filename 
    Model1,                  !- FMU Model Name 
    QLatent,                 !- FMU Model Variable Name 
    0;                       !- Initial Value 

This completes the configuration that is required to simulate EnergyPlus with the FMU. 

Example 2: Interface using 
ExternalInterface:FunctionalMockupUnitImport:To:Actuator 

In this example, a shading controller with a finite state machine is implemented in an FMU 
(ShadingController.fmu). Inputs of the FMU are the outside temperature (TRoo) and the solar 
irradiation (ISolExt) that is incident on the window. The output of the FMU is the shading 
actuation signal (yShade).This example describes how to set up EnergyPlus to exchange 
data between the FMU and EnergyPlus, using an Energy Management System (EMS) 
actuator. 
To interface EnergyPlus using the EMS feature, the following four items are needed: 
 An object that instructs EnergyPlus to activate the external interface. 
 An object that specifies the FMU and its instances. 
 EnergyPlus objects that read data from EnergyPlus and send to FMU. 
 EnergyPlus objects that read data from FMU and send to EnergyPlus. 

Creating the EnergyPlus idf file 

To create the EnergyPlus idf file the user should: 
 Use the parser to generate a temporary idf. 
 Copy the FMU information from the temporary idf into the full idf file. 
 Modify the full idf file to link the FMU variables with EnergyPlus variables  

The code below shows how the objects will be in the idf. 
To activate the external interface, we use: 
ExternalInterface,           !- Object to activate the external interface 
 FunctionalMockupUnitImport; !- Name of external interface 

To define the FMU that will be linked to EnergyPlus, we use: 
ExternalInterface:FunctionalMockupUnitImport, 
    ShadingController.fmu,            !- FMU Filename 
    15,                       !- FMU Timeout in milli-seconds  
    0;                        !- FMU LoggingOn 

To enter the two output variables from which the external interface read from and send to 
FMUs, we use: 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    Zn001:Wall001:Win001,             !- EnergyPlus Key Value 
    Surface Ext Solar Incident,       !- EnergyPlus Variable Name 
    ShadingController.fmu,            !- FMU Filename 
    Model1,                           !- FMU Model Name 
    ISolExt;                          !- FMU Model Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    WEST ZONE,                        !- EnergyPlus Key Value 
    Zone Mean Air Temperature,        !- EnergyPlus Variable Name 
    ShadingController.fmu,            !- FMU Filename 
    Model1,                           !- FMU Model Name 
    TRoo;                             !- FMU Model Variable Name 



External Interface(s)  FMU Examples 

9/27/12 22  

 

These output variables need to be specified in the idf file: 
Output:Variable, 
    Zn001:Wall001:Win001,               !- Key Value 
    Surface Ext Solar Incident,         !- Variable Name 
    TimeStep;                           !- Reporting Frequency 
 
Output:Variable, 
    WEST ZONE,                          !- Key Value 
    Zone Mean Air Temperature,          !- Variable Name 
    TimeStep;                           !- Reporting Frequency  

To enter the actuator that changes the control status of the window with name 
“Zn001:Wall001:Win001”, we use: 

ExternalInterface:FunctionalMockupUnitImport:To:Actuator, 
Zn001_Wall001_Win001_Shading_Deploy_Status,  !- EnergyPlus Variable Name 
    Zn001:Wall001:Win001,                !- Actuated Component Unique Name 
    Window Shading Control,                  !- Actuated Component Type 
    Control Status,                      !- Actuated Component Control Type 
    ShadingController.fmu,                   !- FMU Filename 
    Model1,                                  !- FMU Model Name 
    yShade,                                  !- FMU Model Variable Name  
    6;                                       !- Initial Value 

      This completes the configuration that is required to simulate EnergyPlus with the FMU. 

Example 3: Interface using 
ExternalInterface:FunctionalMockupUnitImport:To:Variable 

This example implements the same controller as the Example 2. However, the interface with 
EnergyPlus is done using an external interface variable instead of an external interface 
actuator. Inputs of the FMU are the outside temperature (TRoo) and the solar irradiation 
(ISolExt) that is incident on the window. The output of the FMU is the shading actuation 
signal (yShade). 
To interface EnergyPlus using an external interface variable, the following items are needed: 
 An object that instructs EnergyPlus to activate the external interface. 
 An object that specifies the FMU and its instances. 
 EnergyPlus objects that read data from EnergyPlus and send to FMU. 
 EnergyPlus objects that read data from FMU and send to EnergyPlus. 

Creating the EnergyPlus idf file 

To create the EnergyPlus idf file the user should: 
 Use the parser to generate a temporary idf. 
 Copy the FMU information from the temporary idf into the full idf file. 
 Modify the full idf file to link the FMU variables with EnergyPlus 

The code below shows how the objects will be in the idf. 
To activate the external interface, we use: 
ExternalInterface,           !- Object to activate the external interface 
 FunctionalMockupUnitImport; !- Name of external interface 

To define the FMU that will be linked to EnergyPlus, we use: 
ExternalInterface:FunctionalMockupUnitImport, 
    ShadingController.fmu,            !- FMU Filename 
    15,                       !- FMU Timeout in milli-seconds  
    0;                        !- FMU LoggingOn 



External Interface(s)  FMU Examples 

9/27/12 23  

To enter the two output variables from which the external interface read from and send to 
FMUs, we use: 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    Zn001:Wall001:Win001,             !- EnergyPlus Key Value 
    Surface Ext Solar Incident,       !- EnergyPlus Variable Name 
    ShadingController.fmu,            !- FMU Filename 
    Model1,                           !- FMU Model Name 
    ISolExt;                          !- FMU Model Variable Name 
 
ExternalInterface:FunctionalMockupUnitImport:From:Variable, 
    WEST ZONE,                        !- EnergyPlus Key Value 
    Zone Mean Air Temperature,        !- EnergyPlus Variable Name 
    ShadingController.fmu,            !- FMU Filename 
    Model1,                           !- FMU Model Name 
    TRoo;                             !- FMU Model Variable Name 

These output variables need to be specified in the idf file: 
Output:Variable, 
    Zn001:Wall001:Win001,               !- Key Value 
    Surface Ext Solar Incident,         !- Variable Name 
    TimeStep;                           !- Reporting Frequency 
 
Output:Variable, 
    WEST ZONE,                          !- Key Value 
    Zone Mean Air Temperature,          !- Variable Name 
    TimeStep;                           !- Reporting Frequency  

To write data from the external interface to an EnergyPlus EMS variable, we use the 
following item in idf file: 

ExternalInterface:FunctionalMockupUnitImport:To:Variable, 
    Shade_Signal,            !- EnergyPlus Variable Name 
    ShadingController.fmu,   !- FMU Filename 
    Model1,                  !- FMU Model Name 
    yShade,                  !- FMU Model Variable Name 
    1;                       !- Initial Value 

which declares a variable with name yShade that can be used in an Erl program to 
actuate the shading control of the window “Zn001:Wall001:Win001” as follows: 

! EMS program. The first assignments sets the shading status and converts it 
into the 
!              EnergyPlus signal (i.e., replace 1 by 6). 
!              The second assignment sets yShade to  
!              an EnergyManagementSystem:OutputVariable 
!              which will be read by the external interface. 
  EnergyManagementSystem:Program, 
    Set_Shade_Control_State,          !- Name 
    Set Shade_Signal = 6*yShade,      !- Program Line 1 
    Set Shade_Signal_01 = yShade+0.1; !- Program Line 2 
 
! Declare an actuator to which the EnergyManagementSystem:Program will write 
  EnergyManagementSystem:Actuator, 
    Shade_Signal,  !- Name 
    Zn001:Wall001:Win001,             !- Actuated Component Unique Name 
    Window Shading Control,           !- Actuated Component Type 
    Control Status;                   !- Actuated Component Control Type 
 
! Declare a global variable to which the EnergyManagementSystem:Program will 
write 
  EnergyManagementSystem:GlobalVariable, 
    Shade_Signal_01;                  !- Name of Erl variable 

This completes the configuration that is required to simulate EnergyPlus with the FMU. 



References  FMU Examples 

9/27/12 24  

References 

Hensen, Jan L. M. 1999. “A comparison of coupled and de-coupled solutions for temperature 
and air flow in a building.” ASHRAE Transactions 105 (2): 962–969. 
Zhai, Zhiqiang John, and Qingyan Yan Chen. 2005. “Performance of coupled building energy 
and CFD simulations.” Energy and Buildings 37 (4): 333–344. 
BCVTB Documentation. 2011. Online available at: 
http://simulationresearch.lbl.gov/bcvtb/releases/1.0.0/doc/manual/index.xhtml [last accessed: 
06/13/2011]. 
Expat XML Parser. 2011. http://sourceforge.net/projects/expat/ [Last accessed: 06/20/2011]. 
G. Fábián, D.A. van Beek, J.E. Rooda. 2008. Substitute equations for index reduction and 
discontinuity handling.  In Proc. of the Third International Symposium on Mathematical 
Modeling, Vienna, Austria. 
Modelisar. 2010. “Functional Mock-up Interface for Co-Simulation.” 
http://www.modelisar.com/specifications/FMI_for_CoSimulation_v1.0.pdf [Last accessed: 
06/06/2011]. 

http://simulationresearch.lbl.gov/bcvtb/releases/1.0.0/doc/manual/index.xhtml
http://www.modelisar.com/specifications/FMI_for_CoSimulation_v1.0.pdf

	External Interface(s)
	Introduction
	Coupling EnergyPlus with the Building Controls Virtual Test Bed
	Algorithm for data exchange

	BCVTB Examples
	Architecture of System
	XML Syntax
	Example 1: Interface using ExternalInterface:Schedule
	Creating the EnergyPlus idf file
	Creating the configuration file
	Creating the Ptolemy model


	Example 2: Interface using ExternalInterface:Actuator
	Creating the EnergyPlus idf file
	Creating the configuration file


	Example 3: Interface using ExternalInterface:Variable
	Creating the EnergyPlus idf file
	Creating the configuration file


	Coupling EnergyPlus with Functional Mock-up Units for co-simulation
	Data exchange between EnergyPlus and FMUs
	Case 1: Linking two systems through differential variables
	Case 2: Linking two systems through algebraic and differential variables
	Requirements

	FMU Examples
	Architecture of the FMU for co-simulation Import
	Workflow of the FMU for co-simulation import
	FMU Parser
	Example 1: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Schedule
	Creating the EnergyPlus idf file

	Example 2: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Actuator
	Creating the EnergyPlus idf file

	Example 3: Interface using ExternalInterface:FunctionalMockupUnitImport:To:Variable
	Creating the EnergyPlus idf file



	References
	Return to Document Main Menu
	Return to Application Guide Main Menu

