
ENERGYPLUS™

COPYRIGHT © 1996-2012 The Board of Trustees of the University of Illinois and the Regents of the University of California through
the Ernest Orlando Lawrence Berkeley National Laboratory.
All Rights Reserved. No part of this material may be reproduced or transmitted in any form or by any means without the prior written
permission of the University of Illinois or the Ernest Orlando Lawrence Berkeley National Laboratory.
EnergyPlus is a Trademark of the US Department of Energy.

Application Guide for EMS

Energy Management System User Guide

(a.k.a. The Book of Erl)

Date: September 27, 2012

TABLE OF CONTENTS

9/27/12 i

Introduction .. 1

Background ... 1

Organization .. 1

EnergyPlus Runtime Language... 2

Statement Keywords ... 2

Table 1. Statement Keywords for Erl ... 2

Rules for IF blocks: .. 2

Rules for WHILE blocks: .. 3

Variables ... 3

Built-In Variables ... 5

Table 2. Built-In Unique Variables for Erl .. 5

Trend Variables ... 6

Expressions .. 6

Table 3. Operators for Erl.. 6

Built-In Functions .. 7

Built-in Math Functions .. 8

Table 4. Built-in Math Functions for Erl ... 8

Built-In Simulation Management Functions .. 9

Table 5. Built-in EnergyPlus Simulation Management Functions for Erl 9

Built-in Trend Variable Functions ... 9

Table 6. Built-in Functions for Trend Variables in Erl ... 9

Built-in Psychrometric Functions .. 10

Table 7. Built-in Psychrometric Functions for Erl ... 10

Built-in Curve and Table Functions .. 12

Table 8. Built-in Function for Accessing Curves and Tables 12

Internal Variables ... 14

TABLE OF CONTENTS

9/27/12 ii

Zone Geometry ... 14

Internal Gains .. 14

People Count Design Level ... 14

Lighting Power Design Level ... 14

Plug and Process Power Design Level .. 15

Gas Process Power Design Level ... 15

Process District Heat Design Level .. 15

Process Steam District Heat Design Level .. 15

Other Equipment Design Level .. 15

Simple Zone Baseboard Capacity ... 15

HVAC Systems ... 15

AirTerminal:SingleDuct:Uncontrolled ... 15

Fan Nominal Ratings ... 16

Unitary HVAC Nominal Ratings ... 16

Outdoor Air Mixer Nominal Ratings ... 16

Pump Nominal Ratings .. 17

Low Temperature Radiant Hydronic .. 17

On-Site Electricity Production .. 17

Generator Nominal Ratings ... 17

Electrical Storage .. 17

Sizing .. 17

Sizing:Zone ... 18

Sizing:System .. 18

Sizing:Plant ... 19

EMS Sensors ... 20

Variable Types .. 20

TABLE OF CONTENTS

9/27/12 iii

Schedules ... 20

EMS Actuators ... 21

HVAC Systems ... 21

System Node Setpoints ... 21

Zone HVAC Control ... 22

Plant Supervisory Control .. 22

Outdoor Air System Node Conditions .. 23

AirLoopHVAC Availability Status ... 23

Ideal Loads Air System .. 23

Fan .. 24

DX Cooling Coils ... 24

Unitary Equipment ... 24

AirTerminal:SingleDuct:Uncontrolled ... 25

Outdoor Air Controller .. 25

Plant Load Profile .. 25

Pump ... 25

Window Air Conditioner ... 25

Low Temperature Radiant Hydronic .. 25

Variable Refrigerant Flow Heat Pump Air Conditioner ... 25

Variable Refrigerant Flow Terminal Unit .. 25

Thermal Envelope ... 26

Window Shading Control ... 26

Slat Angle .. 26

Surface Convection Heat Transfer Coefficient ... 26

Material Surface Properties ... 26

Surface Construction State .. 27

TABLE OF CONTENTS

9/27/12 iv

Surface Boundary Conditions .. 27

Air Movement .. 28

Zone Infiltration .. 28

Zone Ventilation .. 28

Zone Mixing ... 28

Zone Cross Mixing... 28

Airflow Network Openings ... 28

Internal Gains .. 28

People ... 28

Lights .. 29

Electric Equipment... 29

Gas Equipment .. 29

Hot Water Equipment .. 29

Steam Equipment .. 29

Other Equipment ... 29

Baseboard ... 29

On-Site Electricity Production .. 29

Generator Dispatch ... 29

Electrical Storage .. 30

Refrigeration ... 30

Condenser Operation .. 30

General ... 30

Schedules ... 30

Curves ... 30

Weather Data .. 30

Sizing .. 31

TABLE OF CONTENTS

9/27/12 v

Sizing:Zone ... 31

System Sizing .. 31

EMS Calling Points .. 32

Figure 1. Overall Program Flow and EMS Calling Points 33

Figure 2. Timestep Sequence with EMS Calling Points 34

Figure 3. System Timestep Sequence with EMS Calling Points 35

Begin New Environment .. 36

After New Environment Warmup Is Complete ... 36

Begin Timestep Before Predictor ... 36

After Predictor Before HVAC Managers .. 37

After Predictor After HVAC Managers ... 37

Inside HVAC System Iteration Loop .. 37

End of Zone Timestep Before Reporting ... 37

End of Zone Timestep After Reporting .. 37

End of System Timestep Before HVAC Reporting ... 37

End of System Timestep After HVAC Reporting .. 38

End of Zone Sizing .. 38

End of System Sizing .. 38

After Component Model Input has Been Read In .. 38

User Defined Component Model ... 38

User-Defined Component Models ... 39

Common Characteristics ... 39

Zone Forced Air Unit ... 39

Primary Air Connection .. 40

Secondary Air Connection ... 41

Plant Connections ... 42

TABLE OF CONTENTS

9/27/12 vi

Water Use ... 43

Ambient Zone .. 43

Air Terminal Unit ... 43

Primary Air Connection .. 44

Secondary Air Connection ... 45

Plant Connections ... 46

Water Use ... 47

Ambient Zone .. 47

Air Coil .. 47

Air Connections ... 48

Plant Connections ... 48

Water Use ... 49

Ambient Zone .. 49

Plant Component .. 50

Plant Connections ... 50

Air Connection ... 53

Water Use ... 53

Ambient Zone .. 53

EMS Examples .. 55

Example 1. Whole-Building Average Zone Air Temperature .. 55

Problem Statement .. 55

EMS Design Discussion .. 55

EMS Input Objects... 56

Example 2. Traditional Setpoint and Availability Managers.. 57

Problem Statement .. 57

EMS Design Discussion .. 57

TABLE OF CONTENTS

9/27/12 vii

EMS Input Objects... 58

Example 3. Hygro-thermal Window Opening Control for Airflow Network 61

Problem Statement .. 61

EMS Design Discussion .. 61

EMS Input Objects... 62

Example 4. Halt Program Based on Constraint ... 62

Problem Statement .. 62

EMS Design Discussion .. 63

EMS Input Objects... 63

Example 5. Computed Schedule ... 64

Problem Statement .. 64

EMS Design Discussion .. 64

EMS Input Objects... 64

Example 6. Window Shade Control ... 65

Problem Statement .. 65

EMS Design Discussion .. 66

EMS Input Objects... 66

Example 7. Constant Volume Purchased Air System .. 69

Problem Statement .. 69

EMS Design Discussion .. 69

EMS Input Objects... 70

Example 8. System Sizing with Discrete Package Sizes ... 71

Problem Statement .. 71

EMS Design Discussion .. 71

EMS Input Objects... 72

Example 9. Demand Management .. 75

TABLE OF CONTENTS

9/27/12 viii

Problem Statement .. 75

EMS Design Discussion .. 75

Table 9. Example 9 Demand Management Adjustments by Control
State ... 76

EMS Input Objects... 77

Example 10. Plant Loop Override Control ... 82

Problem Statement .. 82

EMS Design Discussion .. 82

EMS Input Objects... 83

Example 11. Performance Curve Result Override ... 84

Problem Statement .. 84

EMS Design Discussion .. 84

EMS Input Objects... 85

Figure 4. Results of Performance Curve Override ... 88

Example 12. Variable Refrigerant Flow System Override .. 88

Problem Statement .. 88

EMS Design Discussion .. 88

EMS Input Objects... 88

Example 13. Surface Construction Actuator for Thermochromic Window 89

Problem Statement .. 89

EMS Design Discussion .. 90

EMS Input Objects... 90

Debugging EMS Programs .. 93

ERR File .. 93

EDD File .. 93

Line Trace ... 93

Debugging Strategies .. 94

Introduction Background

9/27/12 1

Introduction

This document provides an in-depth look at the Energy Management System (EMS) feature
in EnergyPlus and provides a way to develop custom control and modeling routines for
EnergyPlus models. EMS is an advanced feature of EnergyPlus and is not for beginners. You
will need to write your own custom computer programs and have a thorough understanding of
how you want your models to behave. If you are intimidated by the idea of writing computer
programs to adjust the fine details of how an EnergyPlus model runs, be aware that EMS is
not for all (or even most) users. However, if you relish the idea of being able to write small
computer programs that override some annoying behavior, you may find that writing Erl
programs can solve many problems faced by energy modelers. EMS is a complicated feature
and this application guide augments the Input/Output Reference by providing an overall
discussion of how to use EMS.

EMS provides high-level, supervisory control to override selected aspects of EnergyPlus
modeling. A small programming language called EnergyPlus Runtime Language (Erl) is used
to describe the control algorithms. EnergyPlus interprets and executes your Erl program as
the model is being run. This guide serves as a programming manual for Erl and attempts to
show you how to customize your EnergyPlus simulations.

Background

We used the operations manual for a common commercial brand of EMS to guide the initial
formulation of Erl. The circa 2000 EMS language from a major manufacturer is a good
example because it uses a full-featured EMS language and does not rely on a graphical user
interface.

Organization

We first describe Erl, then discuss its rules and features, including syntax for writing
statements, variables, expressions, and built-in functions. We then discuss sensors,
actuators, and calling points for the EMS. Then we describe a set of examples applications
for EMS. The last section provides information about debugging Erl programs.

EnergyPlus Runtime Language Statement Keywords

9/27/12 2

EnergyPlus Runtime Language

Erl is the simplified programming language used to define the EMS control and modeling
programs. This section describes the rules and syntax for using Erl to write programs.

Statement Keywords

Every programming language has instructions or commands that tell the processor what to
do. Erl supports a few types of program statements. Each line of an Erl program begins with
a statement keyword. The syntax for each line depends on the keyword that starts that line.
Only those listed in Table 1 are allowed.

Table 1. Statement Keywords for Erl

Keyword Syntax Statement Description

RUN RUN <program name>,
Calls another Erl program or subroutine.
Returns to the calling point when completed.
Recursive calling is allowed.

RETURN RETURN, Prematurely exits a subroutine or program
and returns control to the caller.

SET SET <variable> =
<expression>,

Assigns the right-hand side to the left-hand
side. If <variable> has not been used before,
it is dynamically declared (with local scope).
Note: <variables> should NOT start with
numerics.

IF IF <expression>,

Begins an “IF block.” Conditional decision. If
<expression> evaluates to anything other
than zero, the block of statements after the
IF is executed.

ELSEIF ELSEIF <expression>,

Conditional decision that follows a regular IF
block of instructions. If <expression>
evaluates to anything other than zero, the
block of instructions after the ELSEIF is
executed.

ELSE ELSE,

Conditional decision. Associated with an IF
statement, the block of statements after the
ELSE is executed if <expression> evaluates
to zero for preceding IF and ELSEIF
statements.

ENDIF ENDIF, Terminates IF block (required).

WHILE WHILE <expression>,

Begins a “WHILE block.” Conditional
decision. If <expression> evaluates to
anything other than zero, the block of
statements after the WHILE is repeatedly
executed.

ENDWHILE ENDWHILE, Terminates WHILE block (required).

Rules for IF blocks:

 IF blocks can be nested, but only up to five deep.

EnergyPlus Runtime Language Variables

9/27/12 3

 ELSE is optional. If omitted, the IF block is terminated by ENDIF.
IF-ELSEIF-ELSE-ENDIF blocks are allowed. If there are many ELSEIF statements, the first in
the list that evaluates to true (1.0) is applied and the execution jumps to the ENDIF for that IF
block. If no IF or ELSEIF is true, the ELSE condition (if any) is applied. A single IF block
currently has a limit of 199 ELSEIF statements plus one ELSE statement.

Rules for WHILE blocks:

 WHILE blocks cannot be nested.
 A WHILE block must be terminated by an ENDWHILE
 The block is repeated until the expression following the WHILE statement evaluates

to 0.0 (false).
 Once the WHILE loop is entered, there is a maximum limit on the number of times

the loop can be repeated. The limit is set at one million repetitions to protect against
the possibility of an Erl program entering an infinite loop if the WHILE loop’s
expression is malformed so as to never evaluate to 0.0 (false).

Erl programs are entered into the input data file (IDF) using the input objects called
EnergyManagementSystem:Program and EnergyManagementSystem:Subroutine. These
objects use individual fields to store the statements for an Erl program. As with most
EnergyPlus objects, each field is separated by a comma and typically given a separate line of
text for readability. In this case, each field can be considered a separate line of Erl program
code. Every input field (line of code) must conform to the following rules:

• Every input field contains only one statement.

• Every field begins with a statement keyword that identifies what that particular line of
code is doing.

• The syntax for each statement depends on the keyword.

• All field content (keywords, variable names, etc.) is case insensitive.

• A comma (or semicolon if it is the last field) marks the end of every statement.

• The maximum length for a field is 100 characters. If you enter a longer field, it will be
truncated to the first 100 characters. This can have subtle effects if the remaining
portion forms a viable expression.

• The “!” character is for comments.

REMEMBER, every line needs to end in a comma or, if it is the last in the program, a
semicolon.

Variables

Variables are important to any programming language. All Erl variables, except trend
variables, are treated the same way in Erl and can be used interchangeably with any
instruction.

The rules for selecting names of EMS variables are:

• No spaces are allowed in user-defined variable names.

• Underscore (“_”) is the only special character allowed in variable names.

• Variable names are not case sensitive.

• Names of variables with global scope must be unique.

• Variables cannot be declared with the same name as a built-in variable.

EnergyPlus Runtime Language Variables

9/27/12 4

• Variables can be alpha numeric strings but should NOT start with a numeric.

The rules for using EMS variables are:

• All numeric variables are treated as floating point numbers. You use the underlying
Fortran language features to handle these as double precision real numbers.

• You can use the SET statement to reassign sensor variables and built-in variables.

• Actuator variables use SET to perform control actions.

EMS variables can have either local or global scope. Global scope means that the variables
can be used across Erl programs and always refer to the same instance of a particular
variable. Global variables must have unique names. Local scope means that variables can be
used only within a given Erl program.
Erl programs have eight types of variables:

• Sensor. Each EnergyManagementSystem:Sensor input object declares a user-
defined variable and maps it to a variable elsewhere in EnergyPlus (via output
variables). Variables so declared have global scope and are used to get time-varying
input data from elsewhere in the EnergyPlus model.

• Actuator. Each EnergyManagementSystem:Actuator input object declares a user-
defined Erl variable and maps it to a variable elsewhere in EnergyPlus. Variables so
declared have global scope and are used to set control results elsewhere in the
EnergyPlus model.

• Local. Local variables do not need to be explicitly declared. These undeclared
variables will be automatically registered as EMS variables with local scope. This
allows you to create new variables “on the fly.” Local variables can be used for
temporary storage of intermediate results.

• Global. EnergyManagementSystem:GlobalVariable input objects are used to declare
variables with a user-defined name and global scope. Global variables can be used
to store intermediate results that span across Erl programs. Because the Erl compiler
does not support functions or argument passing, global variables have an important
role in using subroutines. These variables are global only within Erl and not with
respect to code elsewhere in EnergyPlus.

• Built-in. The EMS system automatically declares a set of built-in variables with
predefined names. These variables have global scope. The built-in variables are
always created and cannot be eliminated.

• Internal. Each EnergyManagementSystem:InternalVariable input object declares a
user-defined Erl variable and maps it to a variable elsewhere in EnergyPlus.
Variables so declared have global scope and are used to get static input data from
elsewhere in EnergyPlus.

• Trend. Each EnergyManagementSystem:TrendVariable input object declares a user-
defined Erl trend variable and maps it to a global Erl variable for logging. Trend
variables are used to store the history of Erl variables. Trend variables differ from
other Erl variables in that they can be put to use only through the built-in trend
functions (see Table 6).

• Index. Each EnergyManagementSystem:CurveOrTableIndexVariable and/or
EnergyManagementSystem:ConstructionIndexVariable declares a user defined Erl
variable and maps it to a specific item in the IDF of indicated type.

Built-in variables, internal variables, and sensor variables are primarily used to get
information about the state of the simulation. However, because all variables are treated
alike, built-in variables and sensor variables can also be overwritten by the SET instruction.

EnergyPlus Runtime Language Variables

9/27/12 5

(This applies within the EMS only; the variables in the rest of EnergyPlus program will not be
overwritten.) This allows you to reassign constants such as “on” and “off” as well as the
values of the other built-in variables and sensor variables. There is really no problem with
this, as long as you know what you are doing. One possible application is to reset a sensor
variable that references the outdoor drybulb temperature so it contains the temperature in
degrees Fahrenheit instead of Celsius. Regardless of reassignment, sensor variables and the
dynamic built-in variables (e.g., date and time) will be cleared and updated with the latest
values from EnergyPlus at the next timestep. Resetting a sensor variable does not have a
retroactive effect on the report variable to which it is mapped.

The actuator variable is the counterpart of the sensor variable. Sensor variables are used to
get the state of building systems; actuator variables are used to set the state of building
systems. When used with actuator variables, the SET instruction performs control actions on
the object to which it maps.

Built-In Variables

A set of built-in variables provides date, time, and weather information that is not available via
standard report variables, as well as several handy constant variables such as “true,” “false,”
“on,” and “off.” Several variables provide access to the time and date information during the
course of a simulation. The CurrentTime, Hour and Minute variables represent the point in
time at end of the timestep currently being simulated. EnergyPlus primarily operates in
standard time and these clock values are not adjusted for daylight savings time. The built-in
variable DaylightSavings time is available for use with the daylight savings time adjustment
feature (see RunPeriodControl:DaylightSavingTime). The duration of simulation timesteps
are available in the variables ZoneTimeStep and SystemTimeStep.
Table 2 lists the built-in variables that are always available for use in Erl programs.

Table 2. Built-In Unique Variables for Erl

Variable Name Value
Year 1900–2100
Month 1–12
DayOfMonth 1–31
DayOfWeek 1–7 (1 = Sun, 2 = Mon, …)
DayOfYear 1–365
Holiday 0 if not. 1.0, 2.0, etc., for each type of holiday in model
DaylightSavings 0 or 1, 0 if not daylight savings time, 1 if daylight savings time
CurrentTime 0.0-24.0, (fractional hours)
Hour 0–23 (whole hours only)
Minute 1.0–60.0 (fractional minutes)
True 1.0
False 0.0
On 1.0
Off 0.0
PI 3.14159265358979
SunIsUp 0 (= no) or 1 (= yes)
IsRaining 0 (= no) or 1 (= yes)
ZoneTimeStep Durating of the zone timestep in hours
SystemTimeStep Current duration of the system timestep in hours
CurrentEnvironment Integer index for the current environment period (sizing

EnergyPlus Runtime Language Expressions

9/27/12 6

periods and run periods accumulate throughout the run)
Null Special structure that stops an actuator from overriding control

Trend Variables

Trend variables are used to log data over time. They hold the history of Erl variables from
previous zone timesteps. You create trend variables with an
EnergyManagementSystem:TrendVariable input object, each of which declares a user-
defined Erl trend variable and maps it to a global Erl variable for logging.

Trend variables are also used to store the history of Erl variables. The trend input includes
the number of timesteps that are to be logged. The logging of data is first-in-first-out, meaning
that the oldest data are pushed out the back of the log to make room for the most recent
data. The zone timestep is used as the (constant) increment of time between different
elements in the log and this value, in fractional hours, is available in the ZoneTimeStep built-
in variable.

Trend variables differ from other Erl variables in that they can be used only through the built-
in trend functions (see Table 6). Trend functions provide a number of ways to analyze trend
data and extract data from the log. There are functions to obtain the maximum, minimum,
average, and sum of logged data. There is a function to obtain the rate of change in the data.
All the trend functions include an argument for a log index. This index tells the function how
far back in time to go when evaluating.

Expressions

An expression is a sequence of variables and/or constants linked together by operators. An
expression is always evaluated to a single value.

The rules for expressions are:

• An expression is a sequence of variables and/or constants linked by operators.

• Expressions always evaluate to a single value.

• Comparison operators evaluate to 1.0 for “true” or 0.0 for “false.”

• Compound expressions are allowed and can be organized with parentheses.

The operators shown in Table 3 are available for use in Erl programs.

Table 3. Operators for Erl

Operator
Symbol

Description
Evaluation

Order
Example

() Parentheses left-to-right SET z = 23/(3 + 2)
+ Addition right-to-left SET a = 4 + 5
- Subtraction right-to-left SET b = a - 3
* Multiplication right-to-left SET c = a * b
/ Division left-to-right SET d = b/a
^ Raise to a power left-to-right SET e = c ^ 0.5

== Equality comparison left-to-right IF a == b
<> Inequality comparison left-to-right IF c <> d

> Greater than
comparison left-to-right IF a > e

EnergyPlus Runtime Language Built-In Functions

9/27/12 7

>= Greater than or equal to
comparison left-to-right IF a >= 6

< Less than comparison left-to-right IF b < 2

<= Less than or equal to
comparison left-to-right IF b <= f

&& Logical AND right-to-left IF c && d
|| Logical OR right-to-left IF c || d

Because expressions can be evaluated to a single value, they can be used in SET and IF
statements. That means both of the following instructions are allowed:

SET a = c < d
IF a - 1

In the case of the SET example, the value of “a” is set to 1 if “c” is less than “d”; otherwise, it
is set to 0. For the IF example, the IF block of instructions are executed if a – 1 is greater
than zero.

Compound expressions allow multiple operators to be sequenced or nested. For example:

a + b * 7 / 4.5
(a * 3 + 4) ^ 2
(a > b) && (c < d)
For complicated expressions, it helps to make heavy use of parentheses in your equations.
By using parentheses with proper algebraic evaluation in mind to group terms, you can help
the Erl parser. The language processor is simplistic compared to a full-blown programming
language and sometimes has problems applying the rules of algebra. It is safer to err on the
side of extra parentheses and to inspect the results of complex expressions in the EDD
output.

Built-In Functions

Several useful, built-in functions are available for use in Erl programs. You cannot configure
these; they are internal to the language processor inside EnergyPlus. They provide access to
a subset of general service routines that are useful inside the main EnergyPlus program or
are intrinsic functions available in the underlying Fortran language. The “@” character is used
to signal to the language processor that the following character string defines a built-in
function that is used to assign a result to an Erl variable. The characters appended to the “@”
operator must be one of the predefined names listed in Table 4, Table 5, Table 6, or Table 7.
The syntax of the function call will vary depending on the arguments required by the function,
but the general structure is:
SET <variable> = @<function name> <argument1> <argument2> … <argumentN>
Where “argument” can be either an Erl variable or a numeric constant.

For example, the following two statements can be used to set the value of an Erl variable
called mySupplyRH to have percent relative humidity.

SET mySupplyRH = @RhFnTdbWPb mySupplyDryblub mySupplyHumRat mySupplyPress

SET mySupplyRH = mySupplyRH * 100

EnergyPlus Runtime Language Built-In Functions

9/27/12 8

Built-in Math Functions

Table 4 lists the built-in functions for common mathematical functions. The numerical model
for these functions is provided by the underlying Fortran language and the compiler.

Table 4. Built-in Math Functions for Erl

Function Name Description
Number of
Arguments

@Round Decreases precision of real number argument to
nearest whole number, remains a real number. 1

@Mod Returns remainder after dividing the first argument
by the second. 2

@Sin Sine, returns sine of angle given in radians. 1
@Cos Cosine, returns cosine of angle given in radians. 1

@ArcSin Arcsine, returns angle in radians from sine of
angle. 1

@ArcCos ArcCosine, returns angle in radians from cosine of
angle. 1

@DegToRad Degrees to radians, returns radians from degrees. 1
@RadToDeg Radians to degrees, returns degrees from radians. 1

@Exp Exponential, xe , returns result. 1

@Ln Natural log, log ()e x , returns result. 1

@Max Maximum, returns largest value of two arguments. 2
@Min Minimum, returns smallest value of two arguments. 2

@Abs Absolute value, returns positive magnitude of
argument. 1

@RandomUniform

Pseudo-Random Number Generator, returns
random number with uniform probability distribution
across the range of values passed as the
arguments, inclusive. Argument 1 is the lower limit.
Argument 2 is the upper limit.

2

@RandomNormal

Pseudo-Random Number Generator, returns
random number with normal (Gaussian) probability
distribution as a function of the mean, standard
deviation, and limits. Argument 1 is the mean.
Argument 2 is the standard deviation. Argument 3
is the lower limit. Argument 4 is the upper limit.

4

@SeedRandom

Random Seed, controls the seed used in the
random number generator for calls to
@RandomUniform and @RandomNormal. Use is
optional and provided for repeatable series of
random numbers. The argument is rounded to the
nearest whole number and then used to set the
size and values of the seed for the number
generator.

1

EnergyPlus Runtime Language Built-In Functions

9/27/12 9

Built-In Simulation Management Functions

Table 5. Built-in EnergyPlus Simulation Management Functions for Erl

Function Name Description
Number of
Arguments

@FatalHaltEp
Throws fatal error with time of occurrence and stops
execution of current model. Argument passes a
number that can be used as an error code.

1

@SevereWarnEp
Throws severe error with time of occurrence and
continues execution. Argument passes a number that
can be used as an error code.

1

@WarnEp
Throws warning error and continues execution.
Argument passes a number that can be used as an
error code.

1

Built-in Trend Variable Functions

For control algorithms, you often need to be able put a sensor reading into some historical
context. The trend variables are provided in Erl as a way to log the time history of data to use
in control decisions. To use the trend variables in Erl programs, their values must be
extracted and placed into normal Erl variables. Setting up an Erl variable as a trend variable
requires an EnergyManagementSystem:TrendVariable input object. The access functions
listed in Table 6 are used to obtain data from a trend variable during the execution of an Erl
program. These functions act on trend variables and return values into the user’s Erl
variables for subsequent use in calculations. Each trend function takes the name of the trend
variable and an index that identifies how far back in time the function should be applied.
Trend variable names are also Erl variables but with special pointers to another data
structure with the time series data storage. The trend logs have a first-in, first-out storage
array where only the most recent data are retained. Each element in the history corresponds
to the result for that value over a zone timestep. The time difference between trend log items
is the zone timestep in hours, so that the slope returned by @TrendDirection is in per-hour
units.

Table 6. Built-in Functions for Trend Variables in Erl

Function Name Description
Number of
Arguments

@TrendValue

Returns history value for a particular number of timesteps into
the past. Dereferences data stored in trend into another Erl
variable. Takes trend variable name and the specific timestep
into the past to return.

2

@TrendAverage
Returns historical average (mean) for values in trend variable.
Takes trend variable name and number of steps into the past
to analyze

2

@TrendMax
Returns historical maximum for values in trend variable. Takes
trend variable name and number of steps into the past to
analyze.

2

@TrendMin
Returns historical minimum for values in trend variable within
the index. Takes trend variable name and number of steps into
the past to analyze.

2

@TrendDirection Returns slope of a linear least squares fit of trend data within
the index. Positive if trend is increasing, negative if decreasing. 2

EnergyPlus Runtime Language Built-In Functions

9/27/12 10

Takes trend variable name and number of steps into the past
to analyze.

@TrendSum Returns sum of elements stored in trend. Takes trend variable
name and number of steps into the past to analyze. 2

The trend functions all take as their second argument an array index. This number should be
considered an integer for locating an array position. (It will be rounded down to the nearest
integer using Fortran’s FLOOR intrinsic.) This index argument tells the trend functions how
far back in time they should reach into the history log when they evaluate the function call.
This enables you to compare long- and short-range trends.

Built-in Psychrometric Functions

Building modeling often involves calculations related to moist air. A comprehensive set of
built-in functions is available for psychrometric calculations. Table 7 lists the functions
available for use in Erl programs that are related to moist air properties and some physical
properties related to water. More discussion of the psychrometric functions is provided in the
section “Pyschrometric services” in the Module Developer Guide.

Table 7. Built-in Psychrometric Functions for Erl

Function Name Arguments Description Units

@RhoAirFnPbTdbW

Result Density of moist air kg/m3
Input 1 Barometric pressure Pa
Input 2 Drybulb temperature ºC
Input 3 Humidity ratio kg H2O/kg dry air

@CpAirFnWTdb
Result Heat capacity of moist air J/kg-°C
Input 1 Humidity ratio kg H2O/kg dry air
Input 2 Drybulb temperature ºC

@HfgAirFnWTdb

Result Heat of vaporization for
vapor

J/kg

Input 1 Humidity ratio kg H2O/kg dry air
Input 2 Drybulb temperature ºC

@HgAirFnWTdb
Result Enthalpy of the gas
Input 1 Humidity ratio kg H2O/kg dry air
Input 2 Drybulb temperature ºC

@TdpFnTdbTwbPb

Result Dew-point temperature ºC
Input 1 Drybulb temperature ºC
Input 2 Wetbulb temperature ºC
Input 3 Barometric pressure Pa

@TdpFnWPb
Result Dew-point temperature ºC
Input 1 Humidity ratio kg H2O/kg dry air
Input 2 Barometric pressure Pa

@HFnTdbW
Result Enthalpy of moist air J/kg
Input 1 Drybulb temperature ºC
Input 2 Humidity ratio kg H2O/kg dry air

@HFnTdbRhPb
Result Enthalpy of moist air J/kg
Input 1 Drybulb temperature ºC
Input 2 Relative humidity Fraction (0.0..1)

EnergyPlus Runtime Language Built-In Functions

9/27/12 11

Function Name Arguments Description Units
Input 3 Barometric pressure Pa

@TdbFnHW
Result Drybulb temperature ºC
Input 1 Enthalpy of moist air J/kg
Input 2 Humidity ratio kg H2O/kg dry air

@RhovFnTdbRh
Result Vapor density in air kg/m3
Input 1 Drybulb temperature ºC
Input 2 Humidity ratio kg H2O/kg dry air

@RhovFnTdbWPb

Result Vapor density in air kg/m3
Input 1 Drybulb temperature ºC
Input 2 Humidity ratio kg H2O/kg dry air
Input 3 Barometric pressure Pa

@RhFnTdbRhov
Result Relative humidity Fraction (0.0..1)
Input 1 Drybulb temperature ºC
Input 2 Vapor density in air kg/m3

@RhFnTdbWPb

Result Relative humidity Fraction [0.0..1.0]
Input 1 Drybulb temperature ºC
Input 2 Humidity ratio kg H2O/kg dry air
Input 3 Barometric pressure Pa

@TwbFnTdbWPb

Result Wetbulb temperature ºC
Input 1 Drybulb temperature ºC
Input 2 Humidity ratio kg H2O/kg dry air
Input 3 Barometric pressure Pa

@VFnTdbWPb

Result Specific volume m3/kg
Input 1 Drybulb temperature ºC
Input 2 Humidity ratio kg H2O/kg dry air
Input 3 Barometric pressure Pa

@WFnTdpPb
Result Humidity ratio kg H2O/kg dry air
Input 1 Dew-point temperature ºC
Input 2 Barometric pressure Pa

@WFnTdbH
Result Humidity ratio kg H2O/kg dry air
Input 1 Drybulb temperature ºC
Input 2 Enthalpy of moist air J/kg

@WFnTdbTwbPb

Result Humidity ratio kg H2O/kg dry air
Input 1 Drybulb temperature ºC
Input 2 Wetbulb temperature ºC
Input 3 Barometric pressure Pa

@WFnTdbRhPb

Result Humidity ratio kg H2O/kg dry air
Input 1 Drybulb temperature ºC
Input 2 Relative humidity Fraction [0.0..1.0]
Input 3 Barometric pressure Pa

@PsatFnTemp Result Saturation pressure Pa

EnergyPlus Runtime Language Built-In Functions

9/27/12 12

Function Name Arguments Description Units
Input 1 Drybulb temperature ºC

@TsatFnHPb
Result Saturation temperature ºC
Input 1 Enthalpy of moist air J/kg
Input 2 Barometric pressure Pa

@CpCW
Result Heat capacity of water J/kg-K
Input 1 Temperature ºC

@CpHW
Result Heat capacity of water J/kg-K
Input 1 Temperature ºC

@RhoH2O
Result Density of water kg/m3
Input 1 Temperature ºC

Built-in Curve and Table Functions

EnergyPlus has a number of different generic curve and table input objects that are used to
describe the performance characteristics for various component models. Table 8 describes a
built-in function called @CurveValue that is available for reusing those curve and table input
objects in your Erl programs. Although the Erl language could be used to replicate the
functionality, reusing those input objects can have advantages because the input may have
already been developed for use in traditional component models or the limiting and
interpolation methods are helpful. The @CurveValue function expects six arguments,
although usually only a subset of them will be used depending on the number of independent
variables involved with the curve or table. Because Erl does not support passing optional
arguments, dummy variables do need to be included in the function call for all unused
independent variables. For example, the Curve:Biquadratric object has only x and y
independent variables, so input arguments 4, 5, and 6 will not be used when @CurveValue is
evaluated:
 Set MyCurveResult = @CurveValue myCurveIndex X1 Y1 dummy dummy dummy;
The first input argument is always an Erl variable that has been declared using an
EnergyManagementSystem:CurveOrTableIndexVariable input object. This variable identifies
the location of a specific curve or table in the program’s internal data structures. It is
important that you do not inadvertently reassign the value held in this variable because it is
only filled once at the beginning of the simulation.

Table 8. Built-in Function for Accessing Curves and Tables

Function Name Arguments Description Notes

@CurveValue

Result
Result from evaluating the
curve or table as a function of
the input arguments

Input 1
Index variable that “points” to a
specific curve or table object
defined elsewhere in the IDF.

This variable needs to be
declared and filled using an
EnergyManagementSystem:
CurveOrTableIndexVariable
object.

Input 2 First independent variable Typically the “X” input value,
always used

Input 3 Second independent variable Typically the “Y” value, only
used if curve/table has two

EnergyPlus Runtime Language Built-In Functions

9/27/12 13

or more independent
variables

Input 4 Third independent variable

Typically the “Z” value, only
used if curve/table has three
or more independent
variables.

Input 5 Fourth independent variable Only used if table has four or
more independent variables

Input 6 Fifth independent variable Only used if table has five
independent variables

Internal Variables Zone Geometry

9/27/12 14

Internal Variables

Internal variables form a category of built-in data accessible for EMS. They are internal in that
they access information about the input file from inside EnergyPlus. You should already have
access to the information contained in these because they depend on other content in the
IDF. However, it would be inconvenient to always have to coordinate changes between Erl
programs and the rest of the IDF. Internal variables simplify the process of keeping an Erl
program in sync with other changes to the model. These differ from the built-in variables in
that they may or may not be created in every simulation and have user-defined names that
distinguish among different instances of the same type of data. The internal variables differ
from sensors in that they are usually static values that do not change over time. The
constants might vary from run to run but never within a single run period. Internal variables
are read only.

Internal variables are automatically made available whenever an input file includes basic
EMS input objects and the model they are associated with is included in the input file. To use
an internal variable in an Erl program, you must declare it with an
EnergyManagementSystem:InternalVariable input object. This object assigns a specified Erl
variable name to contain the value in an internal EnergyPlus data structure. The EDD file lists
the specific internal variable types, their unique identifying names, and the units. The rest of
this section provides information about specific internal variables.

Zone Geometry

The internal variables called “Zone Air Volume” and “Zone Floor Area” provide basic
geometric information about each zone. EnergyPlus calculates these from the geometry in
the IDF, or you may input the zone air volume in the zone input object. These internal
variables in Erl programming should be useful during a parametric study where the shape of
the building is being varied, as for a massing study. For example, you could use the zone
floor area to normalize Erl calculations with a per-unit area. Or you could use the zone air
volume to convert between air flows in m3/s to air changes per hour (ACH).

The internal variables called “Zone Multiplier” and “Zone List Multiplier” indicate the
multipliers assigned to zones. These can be useful for customizing sizing calculations.

Internal Gains

A number of internal variables describe design levels for the various types of internal gains.

People Count Design Level

The internal variable “People Count Design Level” provides information about the maximum
number of people associated with each people input object. The units are number of people.
This is the value entered in, or resulting from intermediate calculations using, the inputs in the
People object. This variable is useful for scaling the values assigned to the “Number of
People” control in the “People” EMS actuator.

Lighting Power Design Level

The internal variable “Lighting Power Design Level” provides information about the maximum
lighting electrical power level associated with each Lights input object. The units are Watts.
This is the value entered in, or resulting from intermediate calculations using, the inputs in the
lights object. This variable is useful for scaling the values assigned to the “Electric Power
Level control in the “Lights” EMS actuator.

Internal Variables HVAC Systems

9/27/12 15

Plug and Process Power Design Level

The internal variable “Plug and Process Power Design Level” provides information about the
maximum electrical equipment power level associated with each ElectricEquipment input
object. The units are Watts. This is the value entered in, or resulting from intermediate
calculations using, the inputs in the ElectricEquipment object. This variable is useful for
scaling the values assigned to the “Electric Power Level” control in the “ElectricEquipment”
EMS actuator.

Gas Process Power Design Level

The internal variable “Gas Process Power Design Level” provides information about the
maximum gas equipment power level associated with each GasEquipment input object. The
units are Watts. This is the value entered in, or resulting from intermediate calculations using,
the inputs in the GasEquipment object. This variable is useful for scaling the values assigned
to the “Gas Power Level” control in the “GasEquipment” EMS actuator.

Process District Heat Design Level

The internal variable “Process District Heat Design Level” provides information about the
maximum district heating power level associated with each HotWaterEquipment input object.
The units are Watts. This is the value entered in, or resulting from intermediate calculations
using, the inputs in the HotWaterEquipment object. This variable is useful for scaling the
values assigned to the “District Heating Power Level” control in the “HotWaterEquipment”
EMS actuator.

Process Steam District Heat Design Level

The internal variable “Process Steam District Heat Design Level” provides information about
the maximum district heating power level associated with each SteamEquipment input object.
The units are Watts. This is the value entered in, or resulting from intermediate calculations
using, the inputs in the SteamEquipment object. This variable is useful for scaling the values
assigned to the “District Heating Power Level” control in the “SteamEquipment” EMS
actuator.

Other Equipment Design Level

The internal variable “Other Equipment Design Level” provides information about the
maximum power level associated with each OtherEquipment input object. The units are
Watts. This is the value entered in, or resulting from intermediate calculations using, the
inputs in the OtherEquipment object. This variable is useful for scaling the values assigned to
the “Power Level” control in the “OtherEquipment” EMS actuator.

Simple Zone Baseboard Capacity

The internal variables called “Simple Zone Baseboard Capacity At Low Temperature” and
“Simple Zone Baseboard Capacity At High Temperature” provide information about the power
levels associated with each ZoneBaseboard:OutdoorTemperatureControlled object. These
value are inputs to that object. The variables are useful for scaling the values assigned to the
“Power Level” control in the “ZoneBaseboard:OutdoorTemperatureControlled” EMS actuator.

HVAC Systems

AirTerminal:SingleDuct:Uncontrolled

An internal variable called “AirTerminal:SingleDuct:Uncontrolled Maximum Mass Flow Rate”
provides information about the design flow rate for direct air terminals. The units are kg/s.
This is the mass flow rate (for dry air at standard conditions) at the volume flow rate entered
in the field Maximum Air Flow Rate (m3/s) in the AirTerminal:SingleDuct:Uncontrolled input

Internal Variables HVAC Systems

9/27/12 16

object. This internal variable is useful for scaling the flow rates assigned to the “Mass Flow
Rate” control in the “AirTerminal:SingleDuct:Uncontrolled” EMS actuator.

Fan Nominal Ratings

Fan Maximum Mass Flow Rate

The input variable “Fan Maximum Mass Flow Rate” provides information about the maximum
flow rate for a fan. The units are kg/s. This is the mass flow rate (for dry air at standard
conditions) associated with the volume flow rate entered into the Maximum Air Flow Rate
(m3/s) in the various fan input objects. This internal variable is useful for scaling the flow rates
assigned to the “Fan Air Mass Flow Rate” control in the “Fan” EMS actuator.

Fan Nominal Pressure Rise

The input variable “Fan Nominal Pressure Rise” provides information about the static
pressure rise experienced by a fan. The units are Pascals. This is the value entered into the
field called Pressure Rise in the various fan input objects. This internal variable is useful for
scaling the pressures assigned to the “Fan Pressure Rise” control in the “Fan” EMS actuator.

Fan Nominal Total Efficiency

The input variable “Fan Nominal Total Efficiency” provides information about the nominal
efficiency of each fan. The value is dimensionless and expressed as a fraction. This is the
value entered into the field called Fan Efficiency in the various fan input objects. This internal
variable is useful for scaling the value assigned to “Fan Total Efficiency” control in the “Fan”
EMS actuator.

Unitary HVAC Nominal Ratings

Unitary HVAC Design Heating Capacity

The internal variable called “Unitary HVAC Design Heating Capacity” provides information
about the nominal heating capacity of unitary or furnace HVAC equipment. The units are
Watts. The source of these data will vary depending on the type of heating coil. This internal
variable is useful for scaling the value assigned to “Sensible Load Request” control in the
“Unitary HVAC” EMS actuator.

Unitary HVAC Design Cooling Capacity

The internal variable called “Unitary HVAC Design Cooling Capacity” provides information
about the nominal cooling capacity of unitary or furnace HVAC equipment. The units are
Watts. The source of these data will vary depending on the type of cooling coil. This internal
variable is useful for scaling the value assigned to “Sensible Load Request” control in the
“Unitary HVAC” EMS actuator.

Outdoor Air Mixer Nominal Ratings

Outdoor Air Controller Maximum Mass Flow Rate

The internal variable called “Outdoor Air Controller Maximum Mass Flow Rate” provides
information about the maximum outdoor air rate for each outdoor air system. The units are
kg/s. The sources of these data are inputs in the Controller:OutdoorAir input object. This
internal variable is useful for scaling the value assigned to the “Air Mass Flow Rate” control in
the “Outdoor Air Controller” EMS actuator.

Outdoor Air Controller Minimum Mass Flow Rate

The internal variable called “Outdoor Air Controller Minimum Mass Flow Rate” provides
information about the minimum outdoor air rate for each outdoor air system. The units are
kg/s. The sources of these data are inputs in the Controller:OutdoorAir input object. This
internal variable is useful for scaling the value assigned to the “Air Mass Flow Rate” control in
the “Outdoor Air Controller” EMS actuator.

Internal Variables On-Site Electricity Production

9/27/12 17

Pump Nominal Ratings

The internal variable called “Pump Maximum Mass Flow Rate” provides information about the
size of the pump. The units are kg/s. This is the mass flow rate associated with the volume
flow rate entered into the Rated Flow Rate (m3/s) in the various pump input objects. This
internal variable is useful for scaling the flow rates assigned to the “Pump Mass Flow Rate”
control in the “Pump” EMS actuator.

Low Temperature Radiant Hydronic

Constant Flow Low Temp Radiant Design Water Mass Flow Rate

The internal variable called “Constant Flow Low Temp Radiant Design Water Mass Flow
Rate” provides information about the design water flow rate for radiant systems defined using
a ZoneHVAC:LowTemperatureRadiant:ConstantFlow input object. The units are m3/s. This
internal variable is useful for scaling the flow rates assigned to the “Water Mass Flow Rate”
control in the “Constant Flow Low Temp Radiant” EMS actuator.

Hydronic Low Temp Radiant Design Water Mass Flow Rate for Heating

The internal variable called “Hydronic Low Temp Radiant Design Water Mass Flow Rate for
Heating” provides information about the heating design water flow rate for radiant systems
defined using a ZoneHVAC:LowTemperatureRadiant:VariableFlow input object. The units are
m3/s. This internal variable is useful for scaling the flow rates assigned to the “Water Mass
Flow Rate” control in the “Hydronic Low Temp Radiant” EMS actuator.

Hydronic Low Temp Radiant Design Water Mass Flow Rate for Cooling

The internal variable called “Hydronic Low Temp Radiant Design Water Mass Flow Rate for
Heating” provides information about the cooling design water flow rate for radiant systems
defined using a ZoneHVAC:LowTemperatureRadiant:VariableFlow input object. The units are
m3/s. This internal variable is useful for scaling the flow rates assigned to the “Water Mass
Flow Rate” control in the “Hydronic Low Temp Radiant” EMS actuator.

On-Site Electricity Production

Generator Nominal Ratings

The internal variables called “Generator Nominal Maximum Power” and “Generator Nominal
Thermal To Electric Power” provide information about the nominal capacity of a generator to
produce electricity and heat. The values made available here are those listed in the
associated ElectricLoadCenter:Generators input object. The power is expressed in Watts.

The thermal-to-electric ratio describes how the nominal thermal output compares to the
nominal electrical output and is useful for characterizing combined heat and power (CHP)
units.

Electrical Storage

The internal variable called “Electrical Storage Maximum Capacity” provides information
about the capacity of electrical storage devices. This is the value of the field called Maximum
Storage Capacity in the ElectricLoadCenter:Storage:Simple input object. The units are in
Joules.

Sizing

Several internal variables relate to sizing calculations. Although the primary intent for the
EMS is to enable custom controls for operation, using internal variables is a prime example of

Internal Variables Sizing

9/27/12 18

extending the power of user-defined calculations to control certain aspects of sizing
calculations.

Sizing:Zone

A series of internal variables is available related to zone sizing:

 Final Zone Design Heating Air Mass Flow Rate (kg/s)
 Intermediate Zone Design Heating Air Mass Flow Rate (kg/s)
 Final Zone Design Cooling Air Mass Flow Rate (kg/s)
 Intermediate Zone Design Cooling Air Mass Flow Rate (kg/s)
 Final Zone Design Heating Load (W)
 Intermediate Zone Design Heating Load (W)
 Final Zone Design Cooling Load (W)
 Intermediate Zone Design Cooling Load (W)
 Final Zone Design Heating Air Density (kg/m3)
 Intermediate Zone Design Heating Air Density (kg/m3)
 Final Zone Design Cooling Air Density (kg/m3)
 Intermediate Zone Design Cooling Air Density (kg/m3)
 Final Zone Design Heating Volume Flow (m3/s)
 Intermediate Zone Design Heating Volume Flow (m3/s)
 Final Zone Design Cooling Volume Flow (m3/s)
 Intermediate Zone Design Cooling Volume Flow (m3/s)
 Zone Outdoor Air Design Volume Flow Rate (m3/s)

Sizing:System

A series of internal variables is available related to air system sizing:

 Intermediate Air System Main Supply Volume Flow Rate (m3/s)
 Intermediate Air System Coincident Peak Cooling Mass Flow Rate (kg/s)
 Intermediate Air System Coincident Peak Heating Mass Flow Rate (kg/s)
 Intermediate Air System Noncoincident Peak Cooling Mass Flow Rate (kg/s)
 Intermediate Air System Noncoincident Peak Heating Mass Flow Rate (kg/s)
 Intermediate Air System Heating Volume Flow Rate (m3/s)
 Intermediate Air System Cooling Volume Flow Rate (m3/s)
 Air System Cooling Design Sensible Capacity (W)
 Air System Heating Design Sensible Capacity (W)
 Air System Preheating Design Sensible Capacity (W)
 Air System Outdoor Air Design Volume Flow Rate (m3/s)
 Air System Cooling Design Mixed Air Temperature (C)
 Air System Cooling Design Mixed Air Humidity Ratio (kgWater/kgDryAir)
 Air System Cooling Design Return Air Temperature (C)
 Air System Cooling Design Return Air Humidity Ratio (kgWater/kgDryAir)
 Air System Cooling Design Outdoor Air Temperature (C)
 Air System Cooling Design Outdoor Air Humidity Ratio (kgWater/kgDryAir)
 Air System Heating Design Mixed Air Temperature (C)
 Air System Heating Design Mixed Air Humidity Ratio (kgWater/kgDryAir)
 Air System Heating Design Return Air Temperature (C)

Internal Variables Sizing

9/27/12 19

 Air System Heating Design Return Air Humidity Ratio (kg/kg)
 Air System Heating Design Outdoor Air Temperature (C)
 Air System Heating Design Outdoor Air Humidity Ratio (kg/kg)

Sizing:Plant

An internal variable is available for plant system sizing.
 Plant Design Volume Flow Rate (m3/s)

EMS Sensors Variable Types

9/27/12 20

EMS Sensors

This section provides more information about EMS sensors.

The input object EnergyManagementSystem:Sensor is simple but quite powerful. It reuses
the normal EnergyPlus output variables to provide a general way of obtaining a wide variety
of input data with minimal complications.

One odd result of the approach taken for EMS sensors is that information about the available
sensors is derived from what are usually the outputs of EnergyPlus. The RDD file is an
important resource for EMS users. The RDD file is an output from running EnergyPlus and is
called “eplusout.rdd” (but you may rename it to <your-filename>.rdd with a run manager such
as EP-Launch). This output file is often needed to develop EMS input, so you may need to do
an initial run of the model with traditional controls to obtain an RDD file. The contents of an
RDD file will vary depending on the type of model. Once you have experience and familiarity
with the outputs expected from a model, you should not need to prerun models, as you will be
able to foresee the available output. The RDD file from a similar model with the same types of
components and systems can also be used as a guide for what will be available in a specific
model.

Variable Types

Various types of output variables in EnergyPlus can be used as sensors in the EMS. It is
important to understand some distinctions.

• Reported variables have two update frequencies: zone and system. Zone variables
are updated for each zone timestep. System variables are updated for each system
timestep.

• Reported variables have two types of content: averaged and summed. Averaged
variables are state variables such as temperature and mass flow rate. Summed
variables are quantities of energy such as electricity use.

Schedules

The EnergyManagementSystem:Sensor object can also provide scheduled data for use in Erl
programs. Because schedule values are available as outputs that use the “Schedule Value”
output, they can also be mapped as sensors. You can use any of the various types of
schedule input objects to define a schedule. The schedule does not need to be used
elsewhere in the model. The value of the schedule is then mapped to an EMS variable with
the Schedule Value report variable. When used with the Schedule:File input object, the
sensor object can import time series data into the EMS from an external file. One application
might be to test a proposed EMS algorithm with real experimental data.

EMS Actuators HVAC Systems

9/27/12 21

EMS Actuators

This section provides details about EMS actuators, the conduits by which Erl programs
control EnergyPlus simulations. They actuate selected features inside EnergyPlus. Rather
than add a new set of controls and component models that have EMS awareness, they
generally override established features.

Internal to EnergyPlus are two separate lists of actuators: those that are available for use,
and those that are being used in the EMS. While implementing the EMS, developers have
added code to control points to make them available for use in EMS. The actuators available
in a given model depend on the non-EMS-related content of the input file. Similar to how
EnergyPlus reports the available output variables to the RDD file, a list of available actuators
is written to the EDD file (depending on the settings in Output:EnergyManagementSystem).
Note that the EDD file is ONLY produced if you have set up EMS / Erl programs. To use an
actuator in EMS, you need to enter an EnergyManagementSystem:Actuator input object. The
EDD file contains information needed for this input object; however, it is not available until
after the output has been generated from a previous run. If you do not see a particular
actuator in the EDD output file, it is not available in EMS for that particular model. There is no
way to create a new actuator (except by modifying EnergyPlus source code); you can only
customize the behavior of current actuators. If you need an actuator that you suspect could
be provided by the program but is not available, you can use the regular system(s) for user
support to request it be added to the program. New actuators are added to the program from
time to time so the availability of actuators will grow with each new release.

Actuators override things inside EnergyPlus whenever the actuator’s Erl variable is set to a
value other than “Null.” Null is a special built-in variable used to deactivate an actuator. Once
an actuator starts overriding, it will continue to do so until the actuator’s Erl variable is set to
Null. You should set the actuators to Null whenever you want the EMS to revert to normal
operation.

The rest of this section provides details about specific actuators.

HVAC Systems

System Node Setpoints

A series of actuators is available for all the setpoints that can be placed on system nodes.
System nodes are used to define air and plant loops, and a natural application of EMS is to
control the setpoints at these nodes. The node actuators are all called “System Node
Setpoint.” There are nine control types:

• Temperature Setpoint, (°C)

• Temperature Minimum Setpoint (°C)

• Temperature Maximum Setpoint (°C)

• Humidity Ratio Setpoint (kg H2O/kg dry air)

• Humidity Ratio Minimum Setpoint (kg H2O/kg dry air)

• Humidity Ratio Maximum Setpoint (kg H2O/kg dry air)

• Mass Flow Rate Setpoint (kg/s)

• Mass Flow Rate Minimum Setpoint (kg/s)

• Mass Flow Rate Maximum Setpoint (units kg/s)

EMS Actuators HVAC Systems

9/27/12 22

Using these actuators is natural with an EMS. Typically, the controller would place the
setpoint on the outlet node. Then the component’s low-level controller should operate to meet
the leaving setpoint. Setting the setpoints on nodes should be a common application for the
EMS.

Although all nine possible setpoints are available as EMS actuators, it does not follow that
EnergyPlus can use all of them. Most components can use only one or two setpoints. If a
component cannot control to meet the setpoints on a node, the actuator will do nothing.

Zone HVAC Control

Several actuators relate to HVAC zone controls for temperature, humidity, and comfort.

• Two actuators called “Zone Temperature Control” are available with the control types
of “Heating Setpoint” and “Cooling Setpoint.” These enable you to directly override
the zone-by-zone heating and cooling setpoints. The units are in degrees Celsius.
The unique identifier is the zone name.

• Two actuators called “Zone Humidity Control” are available with the control types
“Relative Humidity Humidifying Setpoint” and “Relative Humidity Dehumidifying
Setpoint.” These enable you to directly override the zone-by-zone humidity control
setpoints. The units are in percent relative humidity. The unique identifier is the zone
name.

• Two actuators called “Zone Comfort Control” are available with the control types
“Heating Setpoint” and “Cooling Setpoint.” These enable you to directly override the
zone-by-zone comfort control setpoints. The units are predicted mean vote (PMV).
The unique identifier is the zone name.

Plant Supervisory Control

Several levels of actuators are available for on/off supervisory control of Plant systems.
• Each plant (and condenser) loop has an actuator called “Plant Loop Overall”

available with the control type “On/Off Supervisory.” Setting the value of this
actuator to 1.0 directs the overall plant to loop to run normally based on other
controls. Setting the value of this actuator to 0.0 directs the overall plant loop to shut
down regardless of what other controls indicate.

• Each plant (and condenser) loop has actuators called “Supply Side Half Loop” and
“Demand Side Half Loop” that are available with the control type “On/Off
Supervisory.” Setting the value of this actuator to 1.0 directs the plant’s loop side to
run normally based on other controls. Setting the value of this actuator to 0.0 directs
the plant’s loop side to shut down regardless of what other controls indicate.

• Each plant (and condenser) loop has a series of actuators called “Supply Side
Branch” and “Demand Side Branch” that are available with the control type “On/Off
Supervisory.” These are available for each individual branch in a loop. Setting the
value of this actuator to 1.0 directs the plant’s branch to run normally based on
other controls. Setting the value of this actuator to 0.0 directs the plant’s branch to
shut down regardless of what other controls indicate.

• Each plant (and condenser) loop has a series of actuators called “Plant Component
*” that are available with the control type “On/Off Supervisory.” These are available
for each individual component on a loop. Setting the value of this actuator to 1.0
directs the component to run normally based on other controls. Setting the value of
this actuator to 0.0 directs the component to shut down regardless of what other
controls indicate.

EMS Actuators HVAC Systems

9/27/12 23

Outdoor Air System Node Conditions

Actuators called “Outdoor Air System Node” are available with control types called “Drybulb
Temperature” and “Wetbulb Temperature.” The units are degrees Celsius. These actuators
are available for all system nodes that are listed in either an OutdoorAir:Node or
OutdoorAir:NodeList input object. You should probably set both the drybulb and wetbulb
temperatures to ensure a full description of the moist air conditions.

The air system and many component models require you to specify a node as an outdoor air
node to obtain values for the outdoor conditions. For example, outdoor air nodes are used at
the inlet to an outdoor air mixer or at the inlet of the heat rejection side of a component
model. Typically this is the weather data value for outdoor conditions. But local variations in
microclimate may shift the local outdoor air temperature to differ slightly from the weather
data. (Currently the only local variation model for this effect in EnergyPlus varies the outdoor
air conditions as a function of height.) If you want to experiment with other models for local
variations in outdoor air conditions, this EMS actuator allows you to override the outdoor
temperature at a particular system node with any model that can be implemented in an Erl
program. For example (although better models for the changes in conditions may need be
developed), this actuator could be used to examine the energy impacts of warmer outdoor air
temperatures experienced by a rooftop packaged HVAC system sitting on a black roof or the
cooler conditions experienced by a unit that is located on the shaded side of a building.
Another example is to make use of a separate model, outside of EnergyPlus, for some
unique type of component (such as a labyrinth or earth-tube) that preconditions outdoor air;
the results of that model could be fed into the air system model in EnergyPlus using these
actuators.

AirLoopHVAC Availability Status

This actuator is available in all models with central, or primary, air systems that are entered
with the object “AirLoopHVAC.” Various availability managers use the air loop’s availability
status to override control of the central air system fan. The fan may be scheduled to be
unavailable during certain times to shut down the system when it is not needed. However,
there may be times when the air system should be started to protect from freezing, for
example. This actuator can force an air system to start up or shut down.

The control is actuated by setting values for the availability status. The settings are numeric,
but represent discrete states the status can take. The following settings are valid:

• 0.0 (= NoAction). This tells the air system to do whatever it would usually do without
any special override status.

• 1.0 (= ForceOff). This overrides the air system to shut down when it would normally
want to run.

• 2.0 (= CycleOn). This overrides the air system to start up when it would normally be
off.

• 3.0 (= CycleOnZoneFansOnly). This overrides only the zone fans (not the central
fans) if they would normally be off.

Ideal Loads Air System

An actuator called “Ideal Loads Air System” is available with control types called “Air Mass
Flow Rate” (supply air), “Outdoor Air Mass Flow Rate,” “Air Temperature,” and “Air Humidity
Ratio.” These are available in models that use the ideal loads air system, formerly known as
purchased air. The units are kg/s for mass flow rate, C for temperature and kg-H2O/kg-dry air
for humidity ratio. The unique identifier is the user-defined name of the
ZoneHVAC:IdealLoadsAirSystem input object.

EMS Actuators HVAC Systems

9/27/12 24

For Air Temperature and Air Humidity Ratio, the overrides are absolute. They are applied
after all other limits have been checked. For mass flow rate, the overrides are not absolute, in
that the model has additional internal controls that may not always be overridden. The
internal controls will still apply the capacity and flow rate limits if defined in the input object.
The EMS override affects the flow rate only if the air system is on. If the air system is “off,”
the mass flow is zero regardless of the actuator setting. The internal model controls will turn
off the air system if the zone is in the dead band or if it is scheduled “off” by availability
managers. This behavior allows you to use the internal controls to determine when the air
should cycle on, as for a constant volume system that cycles to achieve control. If both the
Air Mass Flow Rate and Outdoor Air Mass Flow Rate are overridden, the Outdoor Air Mass
Flow Rate will not be allowed to be greater than the override value for Air Mass Flow Rate.

Fan

Actuators called “Fan” are available with the control types “Fan Air Mass Flow Rate,” “Fan
Pressure Rise,” and “Fan Total Efficiency.” These provide direct control over the fan
operation in an air system. The EMS program can override the flow rate by using kg/s. It can
override the total pressure rise at the fan by using Pascals. And it can override the fan
efficiency on a scale from 0.0 to 1.0. The unique identifier is the name of the fan in the Fan
input objects.
An actuator is also available for overriding the autosize value for the fan’s design air flow rate.
This actuator is called “Fan” and the control type is “'Fan Autosized Air Flow Rate” with units
in m3/s. It is only useful from the calling point named AfterComponentInputReadIn.

DX Cooling Coils

Actuators are available for overriding the autosize values related to the size of single speed
DX coils. Actuators called “Coil:Cooling:DX:SingleSpeed” are available with control types
“Autosized Rated Air Flow Rate” (in m3/s), “Autosized Rated Sensible Heat Ratio” (in W/W),
and “Autosized Rated Total Cooling Capacity” (in W). These are only useful from the calling
point named AfterComponentInputReadIn.

Unitary Equipment

Actuators called “Unitary HVAC” are available with the control types “Sensible Load Request”
and “Moisture Load Request.” These control the operation of unitary equipment. Normally
these systems operate to meet zone loads, but these actuators allow you to override the
controls of unitary systems. The units are in Watts. The unique identifier is the name of the
unitary equipment in the input objects.
Actuators are available for overriding the autosize values related to supply air flow rates
some unitary HVAC equipment. These actuators allow selectively altering the outcome of
sizing routines and are used from the calling point named AfterComponentInputReadIn. The
units are m3/s.

• An actuator called “AirLoopHVAC:Unitary:Furnace:HeatOnly” is available with control
type “Autosized Supply Air Flow Rate.”

• An actuator called “AirLoopHVAC:UnitaryHeatOnly” is available with control type
“Autosized Supply Air Flow Rate.”

• Actuators called “AirLoopHVAC:Unitary:Furnace:HeatCool” and
“AirLoopHVAC:UnitaryHeatCool” are available with control types “Autosized Supply
Air Flow Rate,” “Autosized Supply Air Flow Rate During Cooling Operation,”
“Autosized Supply Air Flow Rate During Heating Operation,” and “Autosized Supply
Air Flow Rate During No Heating or Cooling Operation.”

• An actuator called “AirLoopHVAC:UnitaryHeatPump:AirToAir” is available with control
type “Autosized Supply Air Flow Rate.”

• An actuator called “AirLoopHVAC:UnitaryHeatPump:WaterToAir” is available with
control type “Autosized Supply Air Flow Rate.”

EMS Actuators HVAC Systems

9/27/12 25

AirTerminal:SingleDuct:Uncontrolled

An actuator called “AirTerminal:SingleDuct:Uncontrolled” is available with a control type
called “Mass Flow Rate.” This actuator is available in models that use the direct air terminal.
The units are kg/s. This actuator is used to control the flow rate. Normally, the flow rate of
direct air terminals is fixed by the input or sizing results, but this actuator provides a way to
override the flow with Erl programs.

Outdoor Air Controller

An actuator called “Outdoor Air Controller” is available with the control type called “Air Mass
Flow Rate.” This provides override control over the rate of outdoor air. The units are kg/s.
The unique identifier is the name of the Controller:OutdoorAir input object.

Plant Load Profile

Actuators called “Plant Load Profile” are available with the control types called “Mass Flow
Rate” (in kg/s) and “Power” (in W). The unique identifier is the name of the LoadProfile:Plant
input object. These actuators provide override control over the loads placed on a plant
system by a plant load profile.

Pump

An actuator called “Pump” is available with the control type “Pump Mass Flow Rate” (in kg/s).
This allows you to override the flow rate produced by a pump. The unique identifier is the
name of Pump Input object.

Window Air Conditioner

An actuator called “Window Air Conditioner” is available with a control type called “Part Load
Ratio.” This is nondimensional and takes numbers between 0.0 and 1.0. The unique
identifier is the name of the ZoneHVAC:WindowAirConditioner input object.

Low Temperature Radiant Hydronic

Actuators called “Hydronic Low Temp Radiant” and “Constant Flow Low Temp Radiant” are
available with the control type “Water Mass Flow Rate” (in kg/s). This allows you to override
the flow of water through hydronic radiant systems. The unique identifier is the name of either
the ZoneHVAC:LowTemperatureRadiant:VariableFlow or ZoneHVAC:LowTemperature
Radiant:ConstantFlow input objects.

Variable Refrigerant Flow Heat Pump Air Conditioner

An actuator called “Variable Refrigerant Flow Heat Pump” is available with a control type
called “Operating Mode.” This is nondimensional and takes numbers between 0.0 and 2.0
where 0.0 means the system is off, 1.0 means the system is in cooling mode, and 2.0 means
the system is in heating mode. The unique identifier is the name of the
AirConditioner:VariableRefrigerantFlow input object.

Variable Refrigerant Flow Terminal Unit

An actuator called “Variable Refrigerant Flow Terminal Unit” is available with a control type
called “Part Load Ratio.” This is nondimensional and takes numbers between 0.0 and 1.0.
The unique identifier is the name of the ZoneHVAC:TerminalUnit:VariableRefrigerantFlow
input object. This control over rides the part-load ratio of the terminal unit and can be applied
only when the cooling or heating minimum and maximum outdoor temperature limits of the
condenser (i.e., the AirConditioner:VariableRefrigerantFlow object) are not exceeded.

EMS Actuators Thermal Envelope

9/27/12 26

Thermal Envelope

Window Shading Control

This actuator is available in models that also have the WindowProperty:ShadingControl input
objects. The user-defined name for the WindowProperty:ShadingControl is not used to
identify unique window shading controls; rather, the window name is used to identify the
actuator. This is because there could be multiple windows, all with shades, each of which is
governed by a single WindowProperty:ShadingControl input object. The EMS actuator can
override the control actions for each window separately.

The control is actuated by setting values for the control status. The settings are numeric but
represent discrete states the control can take. The appropriate values depend on the type
and position of the shading device. There are three basic types of shading devices:
switchable glazings, shades, and blinds. (Shades are described with WindowMaterial:Shade
input objects. Blinds are described with WindowMaterial:Blind input objects.) Shades and
blinds can be situated in the exterior, between the glass, or in the interior.

The following settings are valid:

• –1.0: No shading device.

• 0.0: Shading device is off (applies to shades and blinds).

• 1.0: Interior shade is on.

• 2.0: Glazing is switched to a darker state (switchable glazings only).

• 3.0: Exterior shade is on.

• 6.0: Interior blind is on.

• 7.0: Exterior blind is on.

• 8.0: Between-glass shade is on.

• 9.0: Between-glass blind is on.

Slat Angle

If the shading device is a blind, there is also a control type called “Slat Angle.” This angle
control is a continuous numeric value from 0.0 to 180.0. The angle is defined as between the
glazing system’s outward normal and the slat’s outward normal (see the diagram in the input
output reference under WindowMaterial:Blind).

Surface Convection Heat Transfer Coefficient

Two actuators called “Surface” are available with the control types of “Interior Surface
Convection Heat Transfer Coefficient” and “Exterior Surface Convection Heat Transfer
Coefficient.” These provide direct control over the convection coefficient. The units are W/m2-
K. The unique identifier is the surface name.

This actuator controls the heat transfer modeling. Changes in air distribution systems can
affect the interior surface convection coefficients. A sheltered exterior surface may have a
lower surface heat transfer coefficient. This actuator provides a method of applying new
models for convection coefficients.

Material Surface Properties

Three actuators are available for controlling the surface properties material related to
absorptance. Those material layers used in a Construction object that lie at the outside and
the inside of the assembly determine the surface properties of a heat transfer surface.

EMS Actuators Thermal Envelope

9/27/12 27

Actuators called “Material” are available with the control types “Surface Property Solar
Absorptance,” “Surface Property Thermal Absorptance,” and “Surface Property Visible
Absorptance.” These are dimensionless parameters between 0.0 and 1.0. These actuators
are useful for modeling switchable coatings such as thermochromic paints.

Surface Construction State

An actuator is available for controlling the construction assigned to a surface that can be
useful for modeling dynamic technologies for thermal envelopes. These actuators are called
“Surface” and have a control type “Construction State.” This actuator is used in conjunction
with the input object called EnergyManagementSystem:ConstructionIndexVariable. Each
Construction object defined in an input file has an index that points to where the data for that
construction are stored in the program’s internal data structures. The
EnergyManagementSystem:ConstructionIndexVariable input object is used to create and fill a
global Erl variable with the value that points to the specific construction named in the object.
The Erl variable is what you assign to the construction state actuator’s variable to override
the construction assigned to a particular surface. When the actuator is set to Null, the
surface reverts to the Construction originally referenced by the surface in the input file.
Using the surface construction state actuator brings with it a high degree of risk when it
comes to modeling thermal heat capacity and transient heat transfer in opaque surfaces. If
this actuator is used inappropriately, for example to assign different constructions, to a single
surface, that have radically different heat storage capacities, then the heat transfer modeling
results may not be physically accurate. When a construction state is overridden using this
actuator, the thermal history data that evolved while using the previous construction are
reused for the new construction. When this actuator is used, the program attempts to detect if
incompatible constructions are being assigned. In some cases it issues a warning and allows
the assignments to proceed, in others it warns and doesn’t allow the assignment to proceed.
If the original construction assigned to a surface has internal source/sink (defined using
Construction:InternalSource) then any assignments to the surface must also be internal
source constructions. If using the heat transfer algorithm called ConductionFiniteDifference,
then the constructions must have the same number of finite difference nodes or the
assignment is not allowed. The construction state actuator cannot be used in conjunction
with the heat transfer algorithms called ConductionFiniteDifferenceSimplified or
CombinedHeatAndMoistureFiniteElement.

Surface Boundary Conditions

Four actuators, called “Other Side Boundary Conditions,” are available for controlling the
convection and radiation boundary conditions for surfaces that use
“OtherSideConditionsModel.” Each instance of a
SurfaceProperty:OtherSideConditionsModel object will make available these actuators with
the following four control types:

 “Convection Bulk Air Temperature.” This is the temperature of the ambient air
exposed to the surface, in degrees C. This is the temperature used for surface
convection heat transfer boundary conditions on the outdoor, outside-face, other side
of the surface.

 “Convection Heat Tranfer Coefficient.” This is the heat transfer coefficient, in W/(m-
K) used for surface convection boundary conditions on the outdoor, outside-face, or
other side of the surface.

 “Radiation Effective Temperature.” This is the effective temperature of the
environment surrounding the surface, in degrees C. This is the temperature used for
surface thermal radiation heat transfer boundary conditions on the outdoor, outside-
face, other side of the surface.

 “Radiation Linear Heat Transfer Coefficient.” This is the linearized heat transfer
coefficient, in W/(m-K), used for surface thermal radiation boundary conditions on the
outdoor, outside-face, or other side of the surface.

EMS Actuators Air Movement

9/27/12 28

When using these actuators, values should be set for all four types. This boundary condition
has no solar, only convection and radiation.

Air Movement

Zone Infiltration

An actuator called “Zone Infiltration” is available with a control type called “Air Exchange Flow
Rate” (m3/s). This provides override control over the zone-by-zone infiltration rate. The unique
identifier is the name of the ZoneInfiltration object.

Zone Ventilation

An actuator called “Zone Ventilation” is available with a control type called “Air Exchange
Flow Rate” (m3/s). This provides override control over the zone-by-zone ventilation rate. This
simple ventilation model is provided by the input object ZoneVentilation. The unique identifier
is the name of the ZoneVentilation object.

Zone Mixing

An actuator called “ZoneMixing” is available with a control type called “Air Exchange Flow
Rate” (m3/s). This provides override control over the zone-to-zone mixing rate. This simple air
movement model is provided by the input object ZoneMixing. The unique identifier is the
name of the ZoneMixing object.

Zone Cross Mixing

An actuator called “ZoneCrossMixing” is available with a control type called “Air Exchange
Flow Rate” (m3/s). This provides override control over the interzonal mixing rate. This is the
simple air movement model provided by the input object ZoneCrossMixing. The unique
identifier is the name of the ZoneCrossMixing object.

Airflow Network Openings

An actuator called “AirFlow Network Window/Door Opening” is available with a control type
called “Venting Opening Factor.” It is available in models that have operable openings in the
Airflow Network model and that are entered by using either
AirflowNetwork:MultiZone:Component:DetailedOpening or
AirflowNetwork:MultiZone:Component:SimpleOpening input objects. This control allows you
to use EMS to vary the size of the opening during the airflow model calculations, such as for
natural and hybrid ventilation.

The unique identifier is the name of the window or door, not the name of the associated
airflow network input objects. The actuator control involves setting the value of the opening
factor between 0.0 and 1.0.

Internal Gains

People

An actuator called “People” is available with a control type called “Number of People.” This
allows you to dictate the number of people in a zone. The units are persons. The unique
identifier is the name of the people input object. Because you cannot really control people,
this is an example the EMS in EnergyPlus departing from the real world of building EMS.

EMS Actuators On-Site Electricity Production

9/27/12 29

Lights

An actuator called “Lights” is available with a control type called “Electric Power Level” (in W)
This allows you to set the lighting power associated with each Lights input object. The unique
identifier is the name of the Lights input object.

Electric Equipment

An actuator called “ElectricEquipment” is available with a control type called “Electric Power
Level” (in W). This allows you to set the power associated with each ElectricEquipment input
object. The unique identifier is the name of the ElectricEquipment input object.

Gas Equipment

An actuator called “GasEquipment” is available with a control type called “Gas Power Level”
(in W). This allows you to set the power associated with each GasEquipment input object.
The unique identifier is the name of the GasEquipment input object.

Hot Water Equipment

An actuator called “HotWaterEquipment” is available with a control type called “District
Heating Power Level” (in W). This allows you to set the power associated with each
HotWaterEquipment input object. The unique identifier is the name of the
HotWaterEquipment input object.

Steam Equipment

An actuator called “SteamEquipment” is available with a control type called “District Heating
Power Level” (in W). This allows you to set the power associated with each SteamEquipment
input object. The unique identifier is the name of the SteamEquipment input object.

Other Equipment

An actuator called “OtherEquipment” is available with a control type called “Power Level” (in
W). This allows you to set the power associated with each OtherEquipment input object. The
unique identifier is the name of the OtherEquipment input object.

Other equipment offers a way to adjust the zone air energy balance without consuming any
energy resources.

Baseboard

An actuator called “ZoneBaseboard:OutdoorTemperatureControlled” is available with a
control type called “Power Level” (in W). The unique identifier is the name of the
ZoneBaseboard:OutdoorTemperatureControlled input object.

On-Site Electricity Production

Generator Dispatch

An actuator called “On-Site Generator Control” is available with a control type called
“Requested Power.” This actuator is available in models that have on-site electrical
generators. The units are Watts. This control allows you to use the EMS to override how
requests for power generation are dispatched.

The unique identifier is the name of each generator. The Erl programs should set the actuator
value with Watts. Depending on the type and limitations of the generator being modeled, the
power production may not exactly meet what is requested.

EMS Actuators Refrigeration

9/27/12 30

Electrical Storage

Actuators called “Electrical Storage” are available with control types called “Power Draw
Rate” and “Power Charge Rate” (in W). These are available in models that have
ElectricLoadCenter:Storage:Simple input objects. These controls allow you to use the EMS to
override the rate of charging or drawing from storage.

The unique identifiers are the names of the storage objects. For a given timestep, the
electrical storage device can only charge or draw. If the EMS tries to override charge and
draw during the same timestep, the program will find the larger of the two and apply the
difference in that direction.

Refrigeration

Condenser Operation

An actuator called “Refrigeration:System” is available with a control type called “Minimum
Condensing Temperature.” This actuator is available in models that use the
Refrigeration:System object. This actuator allows the user to override the usually constant
value that is input into the field called Minimum Condensing Temperature in the
Refrigeration:System object. This allows operating the condenser using custom control
algorithms.

General

Schedules

A series of actuators is available for overriding schedule values. The following actuators are
available with the control type called “Schedule Value”: Schedule:Year, Schedule:Compact,
Schedule:File, and Schedule:Constant. The units are not known by the schedule and are
determined by the model that references the schedule. The unique identifier is the name of
schedule.

If you try to use a particular schedule as input to calculations that modify that schedule, you
will be in a circular situation with unexpected results. The modified schedule will lose the
original information (unless the actuator is set to Null) and the modifications will be reapplied
on top of previous modifications. When this situation arises, use a copy of the original
schedule as input to the Erl program so you have the original schedule values.

Curves

An advanced actuator called “Curve” with a control type called “Curve Result” is available
whenever any generic curve objects are used. This allows you to override the results
generated by these curves. The units are not known by the actuator and depend on how the
curve is being used by the component model that calls it.

This actuator must be used with caution. The EMS does not necessarily have access to the
independent variables used by the models when the curves are evaluated during normal
evaluation, so in most situations you will probably need to examine EnergyPlus source code
to use this actuator correctly.

Weather Data

A series of actuators are available for overriding the values of weather data that are normally
derived from the .epw weather file. These provide the ability to alter weather data and were
originally requested for use with ExternalInterface for using measured data. The following
can be overridden: outdoor drybulb, outdoor dewpoint, outdoor relative humidity, diffuse
solar, direct solar, wind speed, and wind direction.

EMS Actuators Sizing

9/27/12 31

Sizing

Sizing:Zone

A series of actuators called “Sizing:Zone” is available. These offer a way to override the
results of zone sizing calculations. The unique identifier for each is the name of the Zone
Input object. The following control types are available:

• Zone Design Heating Air Mass Flow Rate (kg/s)

• Zone Design Cooling Air Mass Flow Rate (kg/s)

• Zone Design Heating Load (W)

• Zone Design Cooling Load (W)

• Zone Design Heating Vol Flow (m3/s)

• Zone Design Cooling Vol Flow (m3/s)

System Sizing

A series of actuators called “Sizing:System” is available. These offer a way to override the
results of air system sizing calculations. The unique identifier is the name of the
AirLoopHVAC input object. The following control types are available:

• Main Supply Volume Flow Rate (m3/s)

• Main Supply Coincident Peak Cooling Mass Flow Rate (kg/s)

• Main Supply Coincident Peak Heating Mass Flow Rate (kg/s)

• Main Supply Noncoincident Peak Cooling Mass Flow Rate (kg/s)

• Main Supply Noncoincident Peak Heating Mass Flow Rate (kg/s)

• Main Heating Volume Flow Rate (m3/s)

• Main Cooling Volume Flow Rate (m3/s)

EMS Calling Points Sizing

9/27/12 32

EMS Calling Points

This section provides an overview of EnergyPlus’s program flow and describes the various
places where you can use the EMS to initiate calls for custom controlling. The input object
EnergyManagementSystem:ProgramCallingManager requires the user describe the timing for
when the Erl programs are run. These EMS Calling Points correspond to places inside the
EnergyPlus program where and when the EMS can be called to do something. The EMS
offers a wide range of calling points. This section attempts to explain what you need to know
about the EnergyPlus program flow so you can better understand which calling point to use
for a particular application. Because the EMS needs to interact with the rest of the
EnergyPlus computer program, you need a fairly high level of understanding of the inner
workings of EnergyPlus. Finding the right point to insert your Erl override is a challenge. This
is a complicated computer program. Using an interpreted language to override its calculations
is no simple thing and should not be taken lightly.

The best calling point will depend on the type of actuator being controlled and the intent of
the override activity. Unfortunately, there is no easy way to explain the inner workings of a
model as large as EnergyPlus, so this section includes only a brief overview. We attempt to
provide useful recommendations for the types of control that are best suited for particular
calling points. But for the full details you will need to refer to the EnergyPlus source code,
which you can obtain with a developer license.

This section starts with a series of three figures and then discusses them and the 14 calling
points. Figure 1 shows the overall flow of an EnergyPlus model with some EMS calling
points. Figure 2 shows the sequence for a single timestep with the remaining EMS calling
points. Figure 3 is similar but shows the calling points for shortened system timesteps. These
diagram the flow of procedures during a run from top to bottom.

EMS Calling Points Sizing

9/27/12 33

Figure 1. Overall Program Flow and EMS Calling Points

EMS Calling Points Sizing

9/27/12 34

Figure 2. Timestep Sequence with EMS Calling Points

EMS Calling Points Sizing

9/27/12 35

Figure 3. System Timestep Sequence with EMS Calling Points

When EnergyPlus runs a model, it first does various sizing and setup activities and then
models the environment periods you ask for; e.g., design days and run periods. The built-in
variable called CurrentEnvironment indentifies which of these is being simulated and any
given time. Figure 1 diagrams the overall program flow starting at the top and listing certain

EMS Calling Points Begin New Environment

9/27/12 36

key steps in outline form. EnergyPlus models contain a lot of input, and the internal
processes to acquire and process that input take some time to complete. Before the model
starts doing final calculations, it may have to do various sizing calculations and automatically
design the size of components. It will also go through special setup periods that model a
truncated set of timesteps for each environment period. In the diagram, this initial phase is
not finished until just before the design periods begin. Two EMS calling points that occur only
once in a given run, EndOfZoneSizing and EndOfSystemSizing, can be triggered during this
initial setup phase. During the phase called “Setup Simulation,” the various timestep-based
calling points diagrammed in Figure 2 will also be called.

Another thing that happens during the setup phase described above is that individual HVAC
component models access their input data and do various setup calculations in preparation
for the rest of the simulation. An EMS calling point (added for Version 7) called
“AfterComponentInputReadIn” is available for selected HVAC components that allows
triggering Erl programs at a point just after the component’s input data have been read in but
before the component’s sizing routines have executed. This calling point is intended to be
used with various actuators that are setup to override the autosize values that result from
sizing.

To model environment periods, EnergyPlus runs through a serious of timesteps. Figure 2
diagrams the program flow for a single timestep where the timestep for the system modeling
is equal to that for the zone load modeling. The system timestep can be shorter than the zone
timestep. The usual process of modeling a timestep is to first calculate the zone loads during
the “Predictor,” then model the response of the HVAC systems, and then calculate the
resulting zone conditions during the “Corrector.” Within the HVAC system modeling, some
system iterations are used to iteratively solve a system of systems. Figure 3 is a slightly
modified version Figure 2 that diagrams the situation when the timestep of the system
calculations has been reduced to half the length of the zone timestep.

Begin New Environment

The calling point referred to with the keyword “BeginNewEnvironment” occurs once near the
beginning of each environment period. Environment periods include sizing periods, design
days, and run periods. This calling point will not be useful for control actions, but is useful for
initializing variables and calculations that do not need to be repeated during each timestep.
Once a value is set, Erl variables remember the value during the course of a simulation.
Considerable repetition can be avoided by designing Erl programs to use this calling point for
initializations and calculations that are needed only once. It is not called during individual
timesteps.

After New Environment Warmup Is Complete

The calling point referred to with the keyword “AfterNewEnvironmentWarmUpIsComplete”
occurs once near at the beginning of each environment period but after any warmup days are
complete. This is similar to the previous calling point. Warmup days are used to condition the
transient aspects of the model before proceeding with the first day. This will not be useful for
control actions, but would be useful for reinitializing Erl programs with fresh values after the
warmup days have finished running and the model is about to start the final timestep
calculations for a particular environment period.

Begin Timestep Before Predictor

The calling point called “BeginTimestepBeforePredictor” occurs near the beginning of each
timestep but before the predictor executes. “Predictor” refers to the step in EnergyPlus
modeling when the zone loads are calculated. This calling point is useful for controlling

EMS Calling Points After Predictor Before HVAC Managers

9/27/12 37

components that affect the thermal loads the HVAC systems will then attempt to meet.
Programs called from this point might actuate the building envelope or internal gains based
on current weather or on the results from the previous timestep. Demand management
routines might use this calling point to reduce lighting or process loads, change thermostat
settings, operate window shades, etc.

After Predictor Before HVAC Managers

The calling point called “AfterPredictorBeforeHVACManagers” occurs after predictor and
before the traditional HVAC managers are called. It occurs at each timestep just after the
predictor executes but before SetpointManager and AvailabilityManager models are called. It
is useful for a variety of control actions. However, if there are conflicts, the EMS control
actions could be overwritten by other SetpointManager or AvailabilityManager actions.

After Predictor After HVAC Managers

The calling point called “AfterPredictorAfterHVACManagers” occurs after the predictor and
after the traditional HVAC managers have been called. It occurs at each timestep after the
predictor executes and after the SetpointManager and AvailabilityManager models are called.
It is useful for a variety of control actions. However, if there are conflicts, SetpointManager or
AvailabilityManager actions may be overwritten by EMS control actions.

Inside HVAC System Iteration Loop

The calling point called “InsideHVACSystemIterationLoop” occurs before HVAC systems are
modeled. Within a timestep, EnergyPlus loops over the HVAC model to solve a system of
systems. It recurs after each HVAC system iteration within each timestep and can be used for
a variety of control actions that affect system operation. Being within the iteration loop can
increase the accuracy of control modeling when the inputs to the controls are also changing
interactively. The disadvantage is extra computational expense.

End of Zone Timestep Before Reporting

The calling point called “EndOfZoneTimestepBeforeZoneReporting” occurs near the end of a
zone timestep but before output variable reporting is finalized. It is useful for custom output
variables that use the ZoneTimestep reporting frequency.

End of Zone Timestep After Reporting

The calling point called “EndOfZoneTimestepAfterZoneReporting” occurs at the end of a
zone timestep after output variable reporting is finalized. It is useful for preparing calculations
that will go into effect the next timestep. Its capabilities are similar to
BeginTimestepBeforePredictor, except that input data for current time, date, and weather
data align with different timesteps.

End of System Timestep Before HVAC Reporting

The calling point called “EndOfSystemTimestepBeforeHVACReporting” occurs near the end
of a system timestep but before output variable reporting is finalized. It is useful for custom
output variables that use the SystemTimestep reporting frequency.

EMS Calling Points End of System Timestep After HVAC Reporting

9/27/12 38

End of System Timestep After HVAC Reporting

The calling point called “EndOfSystemTimestepAfterHVACReporting” occurs at the end of a
system timestep after output variable reporting is finalized.

End of Zone Sizing

The calling point called “EndOfZoneSizing” is used to alter the results of zone sizing
calculations. It executes only once per simulation during the early stages and only if the
model includes zone sizing calculations. It is not useful for control applications.

End of System Sizing

The calling point called “EndOfSystemSizing” is used to alter the results of air system sizing
calculations. It executes only once per simulation and is not useful for control applications.

After Component Model Input has Been Read In

The calling point called “AfterComponentInputReadIn” is used to alter the results of individual
autosize fields. It executes whenever one of the selected components has finished reading in
its input data. Those, and only those, component models that have some type of actuator
with an “Autosized” control type will also have this calling point. This same calling point
identifier is used for different HVAC components so programs executed from this point will be
repeated. Currently this calling point exists in three different places: (1) after DX coil input,
(2) after fan input, and (3) after unitary system input.

User Defined Component Model

The calling point called “UserDefinedComponentModel” is used with Erl programs that are
associated with user defined component models. This calling point is executed whenever a
user-defined component model is called to simulate. The user defined component models
track which program calling managers are associated with the specific component and only
those calling managers are executed when this calling point is triggered. This calling point is
only used with calling managers referenced by the following input objects:
PlantComponent:UserDefined, Coil:UserDefined, ZoneHVAC:ForcedAir:UserDefined, or
AirTerminal:SingleDuct:UserDefined.

User-Defined Component Models Common Characteristics

9/27/12 39

User-Defined Component Models

This section provides an overview of how you can use EMS to create your own custom
models for HVAC and plant equipment. EMS can be used not only for controls and
overriding the behavior of existing models, but also to implement entirely new component
models of your own formulation. Such user-defined component models are implemented by
writing Erl programs, setting up internal variables, sensors, actuators and output variables
that work in conjunction with a set of special input objects in the group called “User Defined
HVAC and Plant Component Models.”
This system provides a means of modeling new types of equipment that do not yet have
models implemented in EnergyPlus. The capability to add new custom models should have a
wide variety of creative applications such as evaluating the annual energy performance
implications of new types of equipment and providing a mechanism for including “exceptional
calculation methods” in your EnergyPlus models.
This section first introduces common characteristics of the user-defined component models
and then goes into more detail on each of available component modeling shells that are used
to connect user-defined models and algorithms to the rest of EnergyPlus’ HVAC and plant
simulations.

Common Characteristics

In general, each of the user-defined components will:
• Setup new EMS internal variables for the state conditions entering the component at

each inlet node being used. Internal variables serve a similar role as Sensors in
terms of obtaining input data. The difference is that they are updated just before the
component model programs execute and therefore do not suffer the timestep lag
issues that can be associated with sensors tied to output variables. Whereas most
EMS internal variables are constants, those intended for use with user-defined
components are filled each time the component is simulated and vary over time with
the most current data available.

• Setup new EMS actuators for the state conditions at each outlet node being used.
These actuators are not optional and must be used. For each air or plant connection
with an active outlet node, the associated actuators must be used and filled with valid
values in order for the component model to be properly coupled to the rest of
EnergyPlus. Some of the components will also set the results at their inlet node, for
example to request a mass flow rate.

• Trigger one or more specific program calling manager(s) to execute EMS programs
that are called to initialize, register, and size the component model.

• Trigger one or more specific program calling manager(s) to execute EMS programs
that are called to actually model the component when it is called to be simulated.

The various user-defined components have some similar input fields. Once the user gains
familiarity with one of the components, many of the concepts will carry over to the other user-
defined components. The separate objects are primarily for the purpose of distinguishing
how user-defined components need to vary in order to fit with the rest of EnergyPlus.

Zone Forced Air Unit

The input object called ZoneHVAC:ForcedAir:UserDefined provides a shell for creating
custom models of a device that serves as a single-zone HVAC unit that operates by
circulating air in and out of the zone. This device is analogous to those component models in

User-Defined Component Models Zone Forced Air Unit

9/27/12 40

the Group -- Zone Forced Air Units, such as ZoneHVAC:PackagedTerminalAirConditioner or
ZoneHVAC:WaterToAirHeatPump.
In addition to the primary air connection that connects to the zone, there are options for
additional connections to a second air stream (e.g. for outdoor ventilation or heat source or
sink), up to three separate plant loop connections (e.g. hot water, chilled water, heat
rejection), a water supply tank, a water collection tank, and a separate zone for skin losses.
The zone unit is associated with a thermal zone (by the ZoneHVAC:EquipmentConnections
and ZoneHVAC:EquipmentList objects). In EnergyPlus, when there are controlled thermal
zones with thermostat (and humidistat) controls, the central routines predict the loads that
zone equipment need to meet in order to maintain control of the zone conditions. When there
are multiple types of equipment serving a zone, they are sequenced to meet heating or
cooling loads in a particular order. Rather than the total predicted load, the second or third
devices need to know the load that remains after the earlier-sequenced devices have already
operated on the zone. The following internal variables are useful inputs for controlling zone
equipment in your models:

• An internal variable called “Remaining Sensible Load to Heating Setpoint” provides
the current value for the sensible load, in [W], that remains for this device that if
delivered will allow the zone to reach the heating setpoint under current conditions.

• An internal variable called “Remaining Sensible Load to Cooling Setpoint” provides
the current value for the sensible load, in [W], that remains for this device that if
delivered will allow the zone to reach the cooling setpoint under current conditions.

• An internal variable called “Remaining Latent Load to Humidifying Setpoint” provides
the current value for the latent load, in [kg/s], that remains for this device that if
delivered will allow the zone to reach the humidification setpoint under current
conditions.

• An internal variable called “Remaining Latent Load to Dehumidifying Setpoint”
provides the current value for the latent load, in [kg/s], that remains for this device
that if delivered will allow the zone to reach the dehumidification setpoint under
current conditions.

Primary Air Connection

The primary air connection includes both an inlet and an outlet that are required to be used
when using this component. This is called the primary air connection because it is how the
zone unit is connected to the zone. The inlet to the custom zone unit is a node that is also an
exhaust outlet from the zone. The following EMS internal variables are made available for
this inlet node and should be useful inputs to your own custom models:

• An internal variable called “Inlet Temperature for Primary Air Connection,” provides
the current value for the drybulb air temperature at the component’s inlet node, in [C].

• An internal variable called “Inlet Humidity Ratio for Primary Air Connection,” provides
the current value for the moist air humidity ratio at the component’s inlet node, in [kg-
H2O/kg-dryAir]

• An internal variable called “Inlet Density for Primary Air Connection,” provides the
current value for the density of moist air at the component’s main inlet node, in
[kg/m3].

• An internal variable called “Inlet Specific Heat for Primary Air Connection,” provides
the current value for the specific heat of moist air at the component’s main inlet node,
in [J/kg-C].

The inlet node also has an actuator associated with it so that the rate of air flow leaving the
thermal zone and entering the unit can be passed to the rest of EnergyPlus.

User-Defined Component Models Zone Forced Air Unit

9/27/12 41

• An actuator called “Primary Air Connection,” with the control type “Inlet Mass Flow
Rate,” in [kg/s], needs to be used. This will set the flow rate of air leaving the zone
through the zone exhaust air node.

The primary outlet for the custom zone unit is a node that is also an inlet to the zone. The
following EMS actuators are created for this outlet node and must be used to pass results
from the custom model to the rest of EnergyPlus:

• An actuator called “Primary Air Connection,” with the control type “Outlet
Temperature,” in [C], needs to be used. This will set the drybulb temperature of the
air leaving the zone unit and entering the zone through the zone air inlet node.

• An actuator called “Primary Air Connection,” with the control type “Outlet Humidity
Ratio,” in [kg-H2O/kg-dryAir], needs to be used. This will set the humidity ratio of the
air leaving the zone unit and entering the zone through the zone air inlet node.

• An actuator called “Primary Air Connection,” with the control type “Outlet Mass Flow
Rate,” in [kg/s], needs to be used. This will set the flow rate of air leaving the zone
unit and entering the zone through the zone air inlet node.

It is not required that the primary air connections inlet and outlet mass flow rates be identical.
However, if there is an imbalance, then the model should use the secondary air connection to
balance air mass flows.

Secondary Air Connection

The secondary air connection provides options for an added inlet node, or outlet node, or
both depending on the user’s needs. This separate air stream can be used for outdoor air
ventilation or as a source or sink for energy. The secondary air inlet node will often be
defined to be an outdoor air node (ref. OutdoorAir:Node) but that is not required. The
secondary air outlet node can be used as relief exhaust when the unit is providing outdoor air
ventilation. If the secondary air outlet is not really connected to anything else and just
releases air to the outdoors, then it isn’t necessary that moist air properties be set using
actuators because they will not impact anything else in the model.
If the secondary air connection inlet node is used, then the following internal variables and
actuator are made available:

• An internal variable called “Inlet Temperature for Secondary Air Connection,”
provides the current value for the drybulb air temperature at the secondary inlet node,
in [C].

• An internal variable called “Inlet Humidity Ratio for Secondary Air Connection,”
provides the current value for the moist air humidity ratio at the secondary inlet node,
in [kg-H2O/kg-dryAir]

• An internal variable called “Inlet Density for Secondary Air Connection,” provides the
current value for the density of moist air at the secondary inlet node, in [kg/m3].

• An internal variable called “Inlet Specific Heat for Secondary Air Connection,”
provides the current value for the specific heat of moist air at the secondary inlet
node, in [J/kg-C].

• An actuator called “Secondary Air Connection,” with the control type “Inlet Mass Flow
Rate,” in [kg/s], needs to be used. This will set the flow rate of air entering the zone
unit through the secondary air connection inlet.

If the secondary air connection outlet node is used, then the following actuators are created:
• An actuator called “Secondary Air Connection,” with the control type “Outlet

Temperature,” in [C], needs to be used. This will set the drybulb temperature of the
air leaving the zone unit through the secondary air outlet node.

• An actuator called “Secondary Air Connection,” with the control type “Outlet Humidity
Ratio,” in [kg-H2O/kg-dryAir], needs to be used. This will set the humidity ratio of the
air leaving the zone unit through the secondary air outlet node.

User-Defined Component Models Zone Forced Air Unit

9/27/12 42

• An actuator called “Secondary Air Connection,” with the control type “Outlet Mass
Flow Rate,” in [kg/s], needs to be used. This will set the flow rate of air leaving the
zone unit through the secondary air outlet node.

Plant Connections

The user defined zone unit can also be connected to up to three different plants to provide
hydronic-based cooling, heating, and/or heat source or rejection.
Although the zone unit actively conditions the zone, from the point of view of plant they are
demand components. These plant connections are always “demand” in the sense that the
zone unit will place loads onto the plant loops serving it and are not configured to be able to
meet plant loads in the way that supply equipment could (loading mode is always
DemandsLoad). These plant connections are always of the type that when flow is requested,
the loop will be operated to try and meet the flow request and if not already running, these
flow requests can turn on the loop (loop flow request mode is always
NeedsFlowAndTurnsLoopOn).
For plant loops, both the inlet and outlet nodes need to be used for each loop connection.
The ZoneHVAC:ForcedAir:UserDefined object appears directly on the Branch object used to
describe the plant. The central plant routines require that each plant component be properly
initialized and registered. Special actuators are provided for these initializations and they
should be filled with values by the Erl programs that are called by the program calling
manager assigned to the zone unit for model setup and sizing. The following three actuators
are created for each of “N” plant loops and must be used to properly register the plant
connection:

• An actuator called “Plant Connection N” with the control type “Minimum Mass Flow
Rate,” in [kg/s], should be used. This will set the so-called hardware limit for
component’s minimum mass flow rate when operating. (If not used, then the limit will
be set to zero which may be okay for many if not most models.)

• An actuator called “Plant Connection N” with the control type “Maximum Mass Flow
Rate,” in [kg/s], needs to be used. This will set the so-called hardware limit for the
component’s maximum mass flow rate when operating.

• An actuator called “Plant Connection N” with the control type “Design Volume Flow
Rate,” in [m3/s], needs to be used. This will register the size of the component for
use in sizing the plant loop and supply equipment that will need to meet the loads.

For each plant loop connection that is used, the following internal variables are available for
inputs to the custom component model:

• An internal variable called “Inlet Temperature for Plant Connection N” provides the
current value for the temperature of the fluid entering the component, in [C].

• An internal variable called “Inlet Mass Flow Rate for Plant Connection N” provides the
current value for the mass flow rate of the fluid entering the component, in [kg/s].

• An internal variable called “Inlet Density for Plant Connection N” provides the current
value for the density of the fluid entering the component, in [kg/m3]. This density is
sensitive to the fluid type (e.g. if using glycol in the plant loop) and fluid temperature
at the inlet.

• An internal variable called “Inlet Specific Heat for Plant Connection N” provides the
current value for the specific heat of the fluid entering the component, in [J/kg-C].
This specific heat is sensitive to the fluid type (e.g. if using glycol in the plant loop)
and fluid temperature at the inlet.

For each plant loop connection that is used, the following EMS actuators are created and
must be used to pass results from the custom model to the rest of EnergyPlus:

• An actuator called “Plant Connection N” with the control type “Outlet Temperature,” in
[C], needs to be used. This is the temperature of the fluid leaving the zone unit
through that particular plant connection.

User-Defined Component Models Air Terminal Unit

9/27/12 43

• An actuator called “Plant Connection N” with the control type “Mass Flow Rate,” in
kg/s, needs to be used. This actuator registers the component model’s request for
plant fluid flow. The actual mass flow rate through the component may be different
than requested if the overall loop situation is such that not enough flow is available to
meet all the various requests. In general, this actuator is used to lodge a request for
flow, but the more accurate flow rate will be the internal variable called “Inlet Mass
Flow Rate for Plant Connection N.”

Water Use

The user defined zone unit can be connected to the water use models in EnergyPlus that
allow modeling on-site storage. If a supply inlet water storage tank is used, then an actuator
called “Water System” with the control type “Supplied Volume Flow Rate,” in m3/s, needs to
be used. This sets up the zone unit as a demand component for that storage tank. If a
collection outlet water storage tank is used, then an actuator called “Water System” with the
control type “Collected Volume Flow Rate,” in m3/s, needs to be used.

Ambient Zone

The user defined zone unit can be connected to an ambient zone and provide internal gains
to that zone. The zone can be different than the one that unit is connected to via the primary
air connection if desired. This is for “skin losses” that the unit might have that result from
inefficiencies and other non-ideal behavior. When an ambient zone is specified, the following
actuators are created that can be used for different types of internal gains to the named zone:

• An actuator called “Component Zone Internal Gain” with the control type “Sensible
Heat Gain Rate,” in [W], is available. This can be used for purely convective sensible
heat gains (or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Return Air
Heat Gain Rate,” in [W], is available. This can be used for purely convective sensible
heat gains (or losses) to the return air duct for a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Thermal
Radiation Heat Gain Rate,” in [W], is available. This can be used for thermal
radiation gains (or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Latent Heat
Gain Rate,’ in [W], is available. This can be used for latent moisture gains (or losses)
to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Return Air
Latent Heat Gain Rate,” in [W], is available. This can be used for latent moisture
gains (or losses) to a the return air duct for a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Carbon
Dioxide Gain Rate,” in [m3/s], is available. This can be used for carbon dioxide gains
(or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Gaseous
Contaminant Gain Rate,” in [m3/s], is available. This can be used for generic
gaseous air pollutant gains (or losses) to a zone.

Air Terminal Unit

The input object called AirTerminal:SingleDuct:UserDefined provides a shell for creating
custom models for an air terminal that connects a multi-zone air handler to a thermal zone.
This device is analogous to the single-duct terminal units in the Group – Air Distribution
Equipment, such as AirTerminal:SingleDuct:VAV:Reheat or
AirTerminal:SingleDuct:ConstantVolume:FourPipeInduction.

User-Defined Component Models Air Terminal Unit

9/27/12 44

In addition to the primary air connection that connects from the air loop to the zone, there are
options for additional connections to a second air stream (e.g. for outdoor ventilation or heat
source or sink), up to two separate plant loop connections (e.g. hot water and chilled water),
a water supply tank, a water collection tank, and a separate zone for skin losses.
The air terminal unit is a associated with a thermal zone (by the
ZoneHVAC:EquipmentConnections, ZoneHVAC:EquipmentList, and
ZoneHVAC:AirDistributionUnit objects). In EnergyPlus, when there are controlled thermal
zones with thermostat (and humidistat) controls, the central routines predict the loads that
zone equipment need to meet in order to maintain control of the zone conditions. When there
are multiple types of equipment serving a zone, they are sequenced to meet heating or
cooling loads in a particular order. Rather than the total predicted load, the second or third
devices need to know the load that remains after the earlier-sequenced devices have already
operated on the zone. The following internal variables are useful inputs for controlling zone
equipment in your models:

• An internal variable called “Remaining Sensible Load to Heating Setpoint” provides
the current value for the sensible load, in [W], that remains for this device that if
delivered will allow the zone to reach the heating setpoint under current conditions.

• An internal variable called “Remaining Sensible Load to Cooling Setpoint” provides
the current value for the sensible load, in [W], that remains for this device that if
delivered will allow the zone to reach the cooling setpoint under current conditions.

• An internal variable called “Remaining Latent Load to Humidifying Setpoint” provides
the current value for the latent load, in [kg/s], that remains for this device that if
delivered will allow the zone to reach the humidification setpoint under current
conditions.

• An internal variable called “Remaining Latent Load to Dehumidifying Setpoint”
provides the current value for the latent load, in [kg/s], that remains for this device
that if delivered will allow the zone to reach the dehumidification setpoint under
current conditions.

Primary Air Connection

The primary air connection includes both an inlet and an outlet that are required to be used
when using this component. This called the primary air connection because it is how the
terminal unit is connected from the air handle to the zone. The inlet to the custom air terminal
unit is a node that is also the outlet from an AirLoopHVAC:ZoneSplitter object. The following
EMS internal variables are made available for this inlet node and should be useful inputs to
your own custom models:

• An internal variable called “Inlet Temperature for Primary Air Connection,” provides
the current value for the drybulb air temperature at the component’s inlet node, in [C].

• An internal variable called “Inlet Humidity Ratio for Primary Air Connection,” provides
the current value for the moist air humidity ratio at the component’s inlet node, in [kg-
H2O/kg-dryAir]

• An internal variable called “Inlet Density for Primary Air Connection,” provides the
current value for the density of moist air at the component’s main inlet node, in
[kg/m3].

• An internal variable called “Inlet Specific Heat for Primary Air Connection,” provides
the current value for the specific heat of moist air at the component’s main inlet node,
in [J/kg-C].

The inlet node also has an actuator associated with it so that the rate of air flow leaving the
thermal zone and entering the unit can be passed to the rest of EnergyPlus.

• An actuator called “Primary Air Connection,” with the control type “Inlet Mass Flow
Rate,” in [kg/s], needs to be used. This will set the flow rate of air leaving the zone
splitter and entering the air terminal unit.

User-Defined Component Models Air Terminal Unit

9/27/12 45

The primary outlet for the custom air terminal unit is a node that is also an inlet to the zone.
The following EMS actuators are created for this outlet node and must be used to pass
results from the custom model to the rest of EnergyPlus:

• An actuator called “Primary Air Connection,” with the control type “Outlet
Temperature,” in [C], needs to be used. This will set the drybulb temperature of the
air leaving the air terminal unit and entering the zone through the zone air inlet node.

• An actuator called “Primary Air Connection,” with the control type “Outlet Humidity
Ratio,” in [kg-H2O/kg-dryAir], needs to be used. This will set the humidity ratio of the
air leaving the air terminal unit and entering the zone through the zone air inlet node.

• An actuator called “Primary Air Connection,” with the control type “Outlet Mass Flow
Rate,” in [kg/s], needs to be used. This will set the flow rate of air leaving the air
terminal unit and entering the zone through the zone air inlet node.

It is not required that the primary air connections inlet and outlet mass flow rates be identical.
However, if there is an imbalance, then the model should use the secondary air connection to
balance air mass flows.

Secondary Air Connection

The secondary air connection provides options for an added inlet node, or outlet node, or
both depending on the user’s needs. This separate air stream can be used for outdoor air
ventilation or as a source or sink for energy. The secondary air inlet node will often be
defined to be an outdoor air node (ref. OutdoorAir:Node) but that is not required. The
secondary air outlet node can be used as relief exhaust when the unit is providing outdoor air
ventilation. If the secondary air outlet is not really connected to anything else and just
releases air to the outdoors, then it isn’t necessary that moist air properties be set using
actuators because they will not impact anything else in the model.
If the secondary air connection inlet node is used, then the following internal variables and
actuator are made available:

• An internal variable called “Inlet Temperature for Secondary Air Connection,”
provides the current value for the drybulb air temperature at the secondary inlet node,
in [C].

• An internal variable called “Inlet Humidity Ratio for Secondary Air Connection,”
provides the current value for the moist air humidity ratio at the secondary inlet node,
in [kg-H2O/kg-dryAir]

• An internal variable called “Inlet Density for Secondary Air Connection,” provides the
current value for the density of moist air at the secondary inlet node, in [kg/m3].

• An internal variable called “Inlet Specific Heat for Secondary Air Connection,”
provides the current value for the specific heat of moist air at the secondary inlet
node, in [J/kg-C].

• An actuator called “Secondary Air Connection,” with the control type “Inlet Mass Flow
Rate,” in [kg/s], needs to be used. This will set the flow rate of air entering the air
terminal unit through the secondary air connection inlet.

If the secondary air connection outlet node is used, then the following actuators are created:
• An actuator called “Secondary Air Connection,” with the control type “Outlet

Temperature,” in [C], needs to be used. This will set the drybulb temperature of the
air leaving the air terminal unit through the secondary air outlet node.

• An actuator called “Secondary Air Connection,” with the control type “Outlet Humidity
Ratio,” in [kg-H2O/kg-dryAir], needs to be used. This will set the humidity ratio of the
air leaving the air terminal unit through the secondary air outlet node.

• An actuator called “Secondary Air Connection,” with the control type “Outlet Mass
Flow Rate,” in [kg/s], needs to be used. This will set the flow rate of air leaving the air
terminal unit through the secondary air outlet node.

User-Defined Component Models Air Terminal Unit

9/27/12 46

Plant Connections

The user defined air terminal unit can also be connected to up to two different plants to
provide hydronic-based cooling, heating, or heat source or rejection.
Although the air terminal unit actively conditions the zone, from the point of view of plant they
are demand components. These plant connections are always “demand” in the sense that
the air terminal unit will place loads onto the plant loops serving it and are not configured to
be able to meet plant loads in the way that supply equipment could (loading mode is always
DemandsLoad). These plant connections are always of the type that when flow is requested,
the loop will be operated to try and meet the flow request and if not already running, these
flow requests can turn on the loop (loop flow request mode is always
NeedsFlowAndTurnsLoopOn).
For plant loops, both the inlet and outlet nodes need to be used for each loop connection.
The AirTerminal:SingleDuct:UserDefined object appears directly on the Branch object used to
describe the plant. The central plant routines require that each plant component be properly
initialized and registered. Special actuators are provided for these initializations and they
should be filled with values by the Erl programs that are called by the program calling
manager assigned to the air terminal unit for model setup and sizing. The following three
actuators are created for each of “N” plant loops and must be used to properly register the
plant connection:

• An actuator called “Plant Connection N” with the control type “Minimum Mass Flow
Rate,” in [kg/s], should be used. This will set the so-called hardware limit for
component’s minimum mass flow rate when operating. (If not used, then the limit will
be set to zero which may be okay for many if not most models.)

• An actuator called “Plant Connection N” with the control type “Maximum Mass Flow
Rate,” in [kg/s], needs to be used. This will set the so-called hardware limit for the
component’s maximum mass flow rate when operating.

• An actuator called “Plant Connection N” with the control type “Design Volume Flow
Rate,” in [m3/s], needs to be used. This will register the size of the component for
use in sizing the plant loop and supply equipment that will need to meet the loads.

For each plant loop connection that is used, the following internal variables are available for
inputs to the custom component model:

• An internal variable called “Inlet Temperature for Plant Connection N” provides the
current value for the temperature of the fluid entering the component, in [C].

• An internal variable called “Inlet Mass Flow Rate for Plant Connection N” provides the
current value for the mass flow rate of the fluid entering the component, in [kg/s].

• An internal variable called “Inlet Density for Plant Connection N” provides the current
value for the density of the fluid entering the component, in [kg/m3]. This density is
sensitive to the fluid type (e.g. if using glycol in the plant loop) and fluid temperature
at the inlet.

• An internal variable called “Inlet Specific Heat for Plant Connection N” provides the
current value for the specific heat of the fluid entering the component, in [J/kg-C].
This specific heat is sensitive to the fluid type (e.g. if using glycol in the plant loop)
and fluid temperature at the inlet.

For each plant loop connection that is used, the following EMS actuators are created and
must be used to pass results from the custom model to the rest of EnergyPlus:

• An actuator called “Plant Connection N” with the control type “Outlet Temperature,” in
[C], needs to be used. This is the temperature of the fluid leaving the air terminal unit
through that particular plant connection.

• An actuator called “Plant Connection N” with the control type “Mass Flow Rate,” in
kg/s, needs to be used. This actuator registers the component model’s request for
plant fluid flow. The actual mass flow rate through the component may be different

User-Defined Component Models Air Coil

9/27/12 47

than requested if the overall loop situation is such that not enough flow is available to
meet all the various requests. In general, this actuator is used to lodge a request for
flow, but the more accurate flow rate will be the internal variable called “Inlet Mass
Flow Rate for Plant Connection N.”

Water Use

The user defined air terminal unit can be connected to the water use models in EnergyPlus
that allow modeling on-site storage. If a supply inlet water storage tank is used, then an
actuator called “Water System” with the control type “Supplied Volume Flow Rate,” in m3/s,
needs to be used. This sets up the air terminal unit as a demand component for that storage
tank. If a collection outlet water storage tank is used, then an actuator called “Water System”
with the control type “Collected Volume Flow Rate,” in m3/s, needs to be used.

Ambient Zone

The user defined air terminal unit can be connected to an ambient zone and provide internal
gains to that zone. The zone can be different than the one that unit is connected to via the
primary air connection if desired. This is for “skin losses” that the unit might have that result
from inefficiencies and other non-ideal behavior. When an ambient zone is specified, the
following actuators are created that can be used for different types of internal gains to the
named zone:

• An actuator called “Component Zone Internal Gain” with the control type “Sensible
Heat Gain Rate,” in [W], is available. This can be used for purely convective sensible
heat gains (or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Return Air
Heat Gain Rate,” in [W], is available. This can be used for purely convective sensible
heat gains (or losses) to the return air duct for a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Thermal
Radiation Heat Gain Rate,” in [W], is available. This can be used for thermal
radiation gains (or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Latent Heat
Gain Rate,’ in [W], is available. This can be used for latent moisture gains (or losses)
to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Return Air
Latent Heat Gain Rate,” in [W], is available. This can be used for latent moisture
gains (or losses) to a the return air duct for a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Carbon
Dioxide Gain Rate,” in [m3/s], is available. This can be used for carbon dioxide gains
(or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Gaseous
Contaminant Gain Rate,” in [m3/s], is available. This can be used for generic
gaseous air pollutant gains (or losses) to a zone.

Air Coil

The input object called Coil:UserDefined provides a shell for creating custom models for a
coil that processes air as part of an air handler. This device is analogous to coils models
such as Coil:Cooling:Water, Coil:Heating:Water, and Coil:Cooling:DX:SingleSpeed, but can
also be used for heat-exchanger-like devices such as
HeatExchanger:AirToAir:SensibleAndLatent or EvaporativeCooler:Indirect:WetCoil.
The user defined coil model can use one or two air connections, one optional plant
connection, a water supply tank, a water collection tank, and a separate zone for skin losses.

User-Defined Component Models Air Coil

9/27/12 48

Air Connections

Each of the two air connections that are available include both an inlet and an outlet node
that are required for each air connection that is used. The Coil:UserDefined object appears
directly on a Branch object used to define the supply side of an air handler, or in the
AirLoopHVAC:OutdoorAirSystem:EquipmentList object used to define outdoor air systems.
The following EMS internal variables are made available for each inlet node and should be
useful inputs to your own custom models:

• An internal variable called “Inlet Temperature for Air Connection N,” provides the
current value for the drybulb air temperature at the component’s inlet node, in [C].

• An internal variable called “Inlet Humidity Ratio for Air Connection N,” provides the
current value for the moist air humidity ratio at the component’s inlet node, in [kg-
H2O/kg-dryAir]

• An internal variable called “Inlet Density for Air Connection N,” provides the current
value for the density of moist air at the component’s main inlet node, in [kg/m3].

• An internal variable called “Inlet Specific Heat for Air Connection N,” provides the
current value for the specific heat of moist air at the component’s main inlet node, in
[J/kg-C].

The following EMS actuators are created for each outlet node and must be used to pass
results from the custom model to the rest of EnergyPlus:

• An actuator called “Air Connection N,” with the control type “Outlet Temperature,” in
[C], needs to be used. This will set the drybulb temperature of the air leaving the coil.

• An actuator called “Air Connection N,” with the control type “Outlet Humidity Ratio,” in
[kg-H2O/kg-dryAir], needs to be used. This will set the humidity ratio of the air
leaving the coil.

• An actuator called “Air Connection N,” with the control type “Outlet Mass Flow Rate,”
in [kg/s], needs to be used. This will set the flow rate of air leaving the coil.

Plant Connections

The user defined coil can also be connected to one plant loop to provide hydronic-based
cooling, heating, or heat source or rejection.
Although the coil actively conditions the air stream passing through it, from the point of view
of plant it is a demand component. This plant connection is always “demand” in the sense
that the coil will place loads onto the plant loop serving it and is not configured to be able to
meet plant loads in the way that supply equipment could (loading mode is always
DemandsLoad). This plant connection is always of the type that when flow is requested, the
loop will be operated to try and meet the flow request and if not already running, these flow
requests can turn on the loop (loop flow request mode is always
NeedsFlowAndTurnsLoopOn).
Both the inlet and outlet nodes need to be used is a loop is connected. The Coil:UserDefined
object appears directly on the Branch object used to describe the plant. The central plant
routines require that each plant component be properly initialized and registered. Special
actuators are provided for these initializations and they should be filled with values by the Erl
programs that are called by the program calling manager assigned to the coil for model setup
and sizing. The following three actuators are created for the plant loop and must be used to
properly register the plant connection:

• An actuator called “Plant Connection” with the control type “Minimum Mass Flow
Rate,” in [kg/s], should be used. This will set the so-called hardware limit for
component’s minimum mass flow rate when operating. (If not used, then the limit will
be set to zero which may be okay for many if not most models.)

User-Defined Component Models Air Coil

9/27/12 49

• An actuator called “Plant Connection” with the control type “Maximum Mass Flow
Rate,” in [kg/s], needs to be used. This will set the so-called hardware limit for the
component’s maximum mass flow rate when operating.

• An actuator called “Plant Connection” with the control type “Design Volume Flow
Rate,” in [m3/s], needs to be used. This will register the size of the component for
use in sizing the plant loop and supply equipment that will need to meet the loads.

When the plant loop connection is used, the following internal variables are available for
inputs to the custom component model:

• An internal variable called “Inlet Temperature for Plant Connection” provides the
current value for the temperature of the fluid entering the component, in [C].

• An internal variable called “Inlet Mass Flow Rate for Plant Connection” provides the
current value for the mass flow rate of the fluid entering the component, in [kg/s].

• An internal variable called “Inlet Density for Plant Connection” provides the current
value for the density of the fluid entering the component, in [kg/m3]. This density is
sensitive to the fluid type (e.g. if using glycol in the plant loop) and fluid temperature
at the inlet.

• An internal variable called “Inlet Specific Heat for Plant Connection” provides the
current value for the specific heat of the fluid entering the component, in [J/kg-C].
This specific heat is sensitive to the fluid type (e.g. if using glycol in the plant loop)
and fluid temperature at the inlet.

When the plant loop connection is used, the following EMS actuators are created and must
be used to pass results from the custom model to the rest of EnergyPlus:

• An actuator called “Plant Connection” with the control type “Outlet Temperature,” in
[C], needs to be used. This is the temperature of the fluid leaving the coil.

• An actuator called “Plant Connection” with the control type “Mass Flow Rate,” in kg/s,
needs to be used. This actuator registers the component model’s request for plant
fluid flow. The actual mass flow rate through the component may be different than
requested if the overall loop situation is such that not enough flow is available to
meet all the various requests. In general, this actuator is used to lodge a request for
flow, but the more accurate flow rate will be the internal variable called “Inlet Mass
Flow Rate for Plant Connection.”

Water Use

The user defined coil can be connected to the water use models in EnergyPlus that allow
modeling on-site storage. If a supply inlet water storage tank is used, then an actuator called
“Water System” with the control type “Supplied Volume Flow Rate,” in m3/s, needs to be
used. This sets up the coil as a demand component for that storage tank. If a collection
outlet water storage tank is used, then an actuator called “Water System” with the control
type “Collected Volume Flow Rate,” in m3/s, needs to be used.

Ambient Zone

The user defined coil can be connected to an ambient zone and provide internal gains to that
zone. This is for “skin losses” that the coil might have that result from inefficiencies and other
non-ideal behavior. When an ambient zone is specified, the following actuators are created
that can be used for different types of internal gains to the named zone:

• An actuator called “Component Zone Internal Gain” with the control type “Sensible
Heat Gain Rate,” in [W], is available. This can be used for purely convective sensible
heat gains (or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Return Air
Heat Gain Rate,” in [W], is available. This can be used for purely convective sensible
heat gains (or losses) to the return air duct for a zone.

User-Defined Component Models Plant Component

9/27/12 50

• An actuator called “Component Zone Internal Gain” with the control type “Thermal
Radiation Heat Gain Rate,” in [W], is available. This can be used for thermal
radiation gains (or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Latent Heat
Gain Rate,’ in [W], is available. This can be used for latent moisture gains (or losses)
to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Return Air
Latent Heat Gain Rate,” in [W], is available. This can be used for latent moisture
gains (or losses) to a the return air duct for a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Carbon
Dioxide Gain Rate,” in [m3/s], is available. This can be used for carbon dioxide gains
(or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Gaseous
Contaminant Gain Rate,” in [m3/s], is available. This can be used for generic
gaseous air pollutant gains (or losses) to a zone.

Plant Component

The input object called PlantComponent:UserDefined provides a shell for creating custom
models of a device that is part of the plant models used for hydronic-type systems. This
object can be used for primary heating or cooling devices, such as boilers or chillers.
Although the other user-defined component models can also connect to plant, they are
always simple “demand” components (from the point of view of plant modeling) and their calls
to simulate are led by the air side portions of the program’s calling tree. The plant-centric
component here however, is called to simulate along with other plant components (in flow
order) by plant’s central routines.
The user defined plant component can use up to four different plant loop connections, one
optional air connection, a water supply tank, a water collection tank, and an ambient zone for
skin losses.

Plant Connections

The user defined plant component can be connected to up to four different plant loops.
For plant loops, both the inlet and outlet nodes need to be used for each loop connection.
The PlantComponent:UserDefined object appears directly on the Branch object used to
describe the plant. The central plant routines require that each plant component be properly
initialized and registered. Special actuators are provided for these initializations and they
should be filled with values by the Erl programs that are called by the program calling
manager assigned to that particular loop connection for model setup and sizing. The
following six actuators are created for each of “N” plant loops and must be used to properly
register the plant connection:

• An actuator called “Plant Connection N” with the control type “Minimum Mass Flow
Rate,” in [kg/s], should be used. This will set the so-called hardware limit for
component’s minimum mass flow rate when operating. (If not used, then the limit will
be set to zero which may be okay for many if not most models.)

• An actuator called “Plant Connection N” with the control type “Maximum Mass Flow
Rate,” in [kg/s], needs to be used. This will set the so-called hardware limit for the
component’s maximum mass flow rate when operating.

• An actuator called “Plant Connection N” with the control type “Design Volume Flow
Rate,” in [m3/s], needs to be used. This will register the size of the component for
use in sizing the plant loop and supply equipment that will need to meet the loads.

User-Defined Component Models Plant Component

9/27/12 51

• An actuator called “Plant Connection N” with the control type “Minimum Loading
Capacity,” in [W], needs to be used if the device is to be used as a supply component
with load-based operation schemes.

• An actuator called “Plant connection N” with the control type “Maxium Loading
Capacity,” in [W], needs to be used if the device is to be used as a supply component
with load-based operation schemes.

• An actuator called “Plant Connection N” with the control type “Optimal Loading
Capacity,” in [W], needs to be used if the device is to be used as a supply component
with load-based operation schemes.

For each plant loop connection that is used, the following internal variables are available for
inputs to the custom component model:

• An internal variable called “Inlet Temperature for Plant Connection N” provides the
current value for the temperature of the fluid entering the component, in [C].

• An internal variable called “Inlet Mass Flow Rate for Plant Connection N” provides the
current value for the mass flow rate of the fluid entering the component, in [kg/s].

• An internal variable called “Inlet Density for Plant Connection N” provides the current
value for the density of the fluid entering the component, in [kg/m3]. This density is
sensitive to the fluid type (e.g. if using glycol in the plant loop) and fluid temperature
at the inlet.

• An internal variable called “Inlet Specific Heat for Plant Connection N” provides the
current value for the specific heat of the fluid entering the component, in [J/kg-C].
This specific heat is sensitive to the fluid type (e.g. if using glycol in the plant loop)
and fluid temperature at the inlet.

• An internal variable called “Load Request for Plant Connection N” provides the
current value for the desired operating capacity, in [W]. This is the input for how the
model is being asked to meet the loads on the supply side. This is the result of the
central routines for operation schemes and should be useful for controlling a plant
model. (This internal variable is not made available when this plant connection’s
loading mode is set to DemandsLoad.)

For each plant loop connection that is used, the following EMS actuators are created and
must be used to pass results from the custom model to the rest of EnergyPlus:

• An actuator called “Plant Connection N” with the control type “Outlet Temperature,” in
[C], needs to be used. This is the temperature of the fluid leaving the air terminal unit
through that particular plant connection.

• An actuator called “Plant Connection N” with the control type “Mass Flow Rate,” in
kg/s, needs to be used. This actuator registers the component model’s request for
plant fluid flow. The actual mass flow rate through the component may be different
than requested if the overall loop situation is such that not enough flow is available to
meet all the various requests. In general, this actuator is used to lodge a request for
flow, but the more accurate flow rate will be the internal variable called “Inlet Mass
Flow Rate for Plant Connection N.”

For each plant loop connection that is used, there is input required to specify the nature of the
connection with respect to loads. One of the following choices must be selected depending
on the purpose of the component model.

• DemandsLoad. This type of loading is used for plant connections that place a load on
the loop. Connections that use this loading scheme are not set up to meet loads and
interact with the operation schemes. For example, this loading mode is appropriate
for the condenser side of a chiller.

• MeetsLoadWithPassiveCapacity. This type of loading is used for plant connections
where the component has some capacity to meet loads but it is not really of the type
that could be controlled. For example, a ground heat exchanger is passive because

User-Defined Component Models Plant Component

9/27/12 52

while it can provide some level of heat rejection or source, the amount will vary with
current conditions and cannot usually be explicitly controlled.

• MeetsLoadWithNominalCapacity. This type of loading is used for plant connections
where the component has controllable capacity to meet loads and no outlet
temperature restrictions.

• MeetsLoadWithNominalCapacityLowOutLimit. This type of loading is used for plant
connections where the component has controllable capacity to meet loads but with a
lower limit on the fluid temperature at the outlet node. For example, this can be used
for a chiller evaporator connection when the chiller is prevented from producing
chilled water below a certain temperature limit. When this type of loading is selected,
an actuator is created to allow setting the low temperature limit for use by the load
dispatch routines. The actuator is called “Plant Connection N” with the control type
“Low Outlet Temperature Limit,” in [C], and needs to be used.

• MeetsLoadWithNominalCapacityHiOutLimit. This type of loading is used for plant
connections where the component has controllable capacity to meet loads but with
an upper limit on the fluid temperature at the outlet node. For example, this can be
used for a boiler connection when the boiler is prevented from producing hot water
above a certain temperature limit. When this type of loading is selected, an actuator
is created to allow setting the high temperature limit for use by the load dispatch
routines. The actuator is called “Plant Connection N” with the control type “High
Outlet Temperature Limit,” in [C], and needs to be used.

For each plant loop connection, there is input required for the nature of the flow requests
made by the component with respect to determining the overall flow for the loop. Mass flow
request are also important for resolving the flow rates in parallel branches, but the mode here
is related to the problem of determining the overall flow rate for the loop, not the flow down
one particular branch. The overall loop flow rate is a function of all the flow requests made by
the different devices on the loop and different types of devices have different implications for
the overall loop rate. One of the following three choices must be made depending on the
nature of the plant component.

• NeedsFlowIfLoopOn. Devices with this flow request mode will contribute to the
overall loop flow rate but will not initiate flow themselves. Other devices on the plant
loop (of type NeedsFlowAndTurnsLoopOn) need to make flow requests to get the
loop flowing at all, but once it is flowing, this device can affect the overall loop flow
rate. For example, a chiller may have a lower limit on the allowable chilled water flow
rate through its evaporator and if that lower limit is higher than the current request for
chilled water by the cooling coils, then the overall loop flow will be that needed by the
chiller rather than the coils.

• NeedsFlowAndTurnsLoopOn. Devices with this flow request mode will contribute to
the overall loop flow rate and initiate flow themselves. This mode is used for demand
component such as coils. Devices with this mode will initiate loops to turn on and
start moving fluid.

• ReceivesWhateverFlowAvailable. Devices with this flow request mode will not
contribute to the overall loop flow rate and do not initiate flow themselves. These are
essentially passive devices that take whatever flow is sent to them, such as a ground
heat exchanger.

Separate program calling managers are available for each plant loop connection. The user
defined plant component is called to simulate by the central plant routines (whereas the other
user defined components are called by the central HVAC routines). The calls to simulate are
made for each connection and you may want or need to perform different model calculations
depending on which plant loop connection is being simulated at the time. There is an Erl
program calling manager for initialization, setup, and sizing that needs to be used for each
plant connection and is only called during the early plant loop initialization phase. There is

User-Defined Component Models Plant Component

9/27/12 53

also an Erl program calling manager for the model calculations to perform for each plant
connection.

Air Connection

An air connection is available that includes both an inlet and an outlet node. This can be
used for air source or heat rejections. The following EMS internal variables are made
available for the inlet node, if it is used, and should be useful inputs to your own custom
models:

• An internal variable called “Inlet Temperature for Air Connection,” provides the
current value for the drybulb air temperature at the component’s inlet node, in [C].

• An internal variable called “Inlet Mass Flow Rate for Air Connection,” provides the
current value for the mass flow rate of air at the component’s inlet node, in [kg/s].

• An internal variable called “Inlet Humidity Ratio for Air Connection,” provides the
current value for the moist air humidity ratio at the component’s inlet node, in [kg-
H2O/kg-dryAir]

• An internal variable called “Inlet Density for Air Connection,” provides the current
value for the density of moist air at the component’s main inlet node, in [kg/m3].

• An internal variable called “Inlet Specific Heat for Air Connection,” provides the
current value for the specific heat of moist air at the component’s main inlet node, in
[J/kg-C].

The following EMS actuators are created for the outlet air node, if it is used, and must be
used to pass results from the custom model to the rest of EnergyPlus:

• An actuator called “Air Connection,” with the control type “Outlet Temperature,” in [C],
needs to be used. This will set the drybulb temperature of the air leaving the
component.

• An actuator called “Air Connection,” with the control type “Outlet Humidity Ratio,” in
[kg-H2O/kg-dryAir], needs to be used. This will set the humidity ratio of the air
leaving the component.

• An actuator called “Air Connection,” with the control type “Outlet Mass Flow Rate,” in
[kg/s], needs to be used. This will set the flow rate of air leaving the component.

Water Use

The user defined plant component can be connected to the water use models in EnergyPlus
that allow modeling on-site storage. If a supply inlet water storage tank is used, then an
actuator called “Water System” with the control type “Supplied Volume Flow Rate,” in m3/s,
needs to be used. This sets up the plant component as a demand component for that
storage tank. If a collection outlet water storage tank is used, then an actuator called “Water
System” with the control type “Collected Volume Flow Rate,” in m3/s, needs to be used.

Ambient Zone

The user defined plant component can be connected to an ambient zone and provide internal
gains to that zone. This is for “skin losses” that the component might have that result from
inefficiencies and other non-ideal behavior. When an ambient zone is specified, the following
actuators are created that can be used for different types of internal gains to the named zone:

• An actuator called “Component Zone Internal Gain” with the control type “Sensible
Heat Gain Rate,” in [W], is available. This can be used for purely convective sensible
heat gains (or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Return Air
Heat Gain Rate,” in [W], is available. This can be used for purely convective sensible
heat gains (or losses) to the return air duct for a zone.

User-Defined Component Models Plant Component

9/27/12 54

• An actuator called “Component Zone Internal Gain” with the control type “Thermal
Radiation Heat Gain Rate,” in [W], is available. This can be used for thermal
radiation gains (or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Latent Heat
Gain Rate,’ in [W], is available. This can be used for latent moisture gains (or losses)
to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Return Air
Latent Heat Gain Rate,” in [W], is available. This can be used for latent moisture
gains (or losses) to a the return air duct for a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Carbon
Dioxide Gain Rate,” in [m3/s], is available. This can be used for carbon dioxide gains
(or losses) to a zone.

• An actuator called “Component Zone Internal Gain” with the control type “Gaseous
Contaminant Gain Rate,” in [m3/s], is available. This can be used for generic
gaseous air pollutant gains (or losses) to a zone.

EMS Examples Example 1. Whole-Building Average Zone Air Temperature

9/27/12 55

EMS Examples

This section provides examples that demonstrate how to use the EMS. Each example
provides a problem statement, discusses how to approach a solution using EMS, and
provides example EMS input objects. For each example a complete input data file is provided
with the EnergyPlus release (you can find this in the ExampleFiles\ directory).

A range of example applications is presented here. Each is presented in isolation for
simplicity, but a much more comprehensive approach to EMS programs is also possible.

Example 1. Whole-Building Average Zone Air Temperature

Problem Statement

Although EnergyPlus can report an enormous number of output variables, you may want a
custom report variable such as one for the average temperature in the building. Only zone-
by-zone indoor air temperatures are available. Because it is nearly always important to check
that models are properly controlling zone air conditions, you may need to examine air
temperature results from your models. Compared to scanning across the many zones in a
large building, you could save time when checking a model if you have a single value for a
whole-building average temperature. Of course, you could calculate such a value after a run
by postprocessing, but redoing this for every run is cumbersome and time consuming.
Therefore, it would be more convenient to automatically calculate such a value inside the
program and output it in the usual manner. For example, if we take the example file called
“BenchmarkSmallOfficeNew_USA_IL_CHICAGO-OHARE.idf,” is there a way to create a
custom report variable that provides a weighted average for the indoor temperature of all the
occupied zones in a model?

EMS Design Discussion

This is a fairly simple example in that the EMS controls nothing. There are no actuators.

The example file has six zones, but one is an attic that we do not care about. Therefore, the
main inputs, or EMS sensors, will be the zone air temperatures for the five occupied zones.
We will use EnergyManagementSystem:Sensor objects to obtain the values for the air
temperatures by mapping to the output variable called “Zone Mean Air Temperature.”

A model for average temperature can be constructed by using the zone air volumes as
weights so larger zones have more influence than smaller zones on the resulting average.
The model equation we will implement in EMS for our new report variable is

()
()

zone zone
average

zone

T Vol
T

Vol
∗

= ∑
∑

The example file specifies the zone volume in its zone objects so we have the data needed
for the weighting factors from elsewhere in the IDF. However, a study could vary the
geometry such that the volumes differ from one simulation to another. Zone Air Volume is
available as internal data, so we will use EnergyManagementSystem:InternalVariable input
objects to assign these weighting factors into global Erl variables. If we did not know
beforehand that Zone Air Volume was an available internal variable, we would have had to
prerun the model with some EMS-related objects and the appropriate level of reporting
selected in an Output:EnergyManagementSystem object, and then studied the EDD output
file. Note that the EDD file is only produced if you have EMS/Erl programs in your input file.

EMS Examples Example 1. Whole-Building Average Zone Air Temperature

9/27/12 56

The custom output variable will be defined by using an
EnergyManagementSystem:OutputVariable input object. This requires the Erl variable to be
global, so we need to declare a variable. Let’s call it AverageBuildingTemp, to be global using
an EnergyManagementSystem:GlobalVariable object so we have a way to connect the result
calculated in the Erl program to the custom output.

There are two main considerations when selecting an EMS calling point:

• The call should be toward the end of the zone timestep so the zone air temperature
calculations are finalized.

• The call should be before reporting updates so our new value is available before the
reporting is finalized.

We therefore choose the EMS calling point with the key of
“EndOfZoneTimestepBeforeReporting.”

EMS Input Objects

A set of input objects to solve this problem appears below and is included in the example file
called “EMSCustomOutputVariable.idf.”

EnergyManagementSystem:Sensor,
 T1, !Name
 Perimeter_ZN_1 ,! Output:Variable or Output:Meter Index Key Name
 Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name

 EnergyManagementSystem:Sensor,
 T2, !Name
 Perimeter_ZN_2 , ! Output:Variable or Output:Meter Index Key Name
 Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name

 EnergyManagementSystem:Sensor,
 T3, !Name
 Perimeter_ZN_3 , ! Output:Variable or Output:Meter Index Key Name
 Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name

 EnergyManagementSystem:Sensor,
 T4, !Name
 Perimeter_ZN_4, ! Output:Variable or Output:Meter Index Key Name
 Zone Mean Air Temperature ;! Output:Variable or Output:Meter Name

 EnergyManagementSystem:Sensor,
 T5, !Name
 Core_ZN , ! Output:Variable or Output:Meter Index Key Name
 Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name

 EnergyManagementSystem:ProgramCallingManager,
 Average Building Temperature , ! Name
 EndOfZoneTimestepBeforeZoneReporting , ! EnergyPlus Model Calling Point
 AverageZoneTemps ; ! Program Name 1

 EnergyManagementSystem:GlobalVariable,
 AverageBuildingTemp;

 EnergyManagementSystem:OutputVariable,
 Weighted Average Building Zone Air Temperature [C], ! Name
 AverageBuildingTemp, ! EMS Variable Name
 Averaged, ! Type of Data in Variable
 ZoneTimeStep ; ! Update Frequency

 EnergyManagementSystem:InternalVariable,

EMS Examples Example 2. Traditional Setpoint and Availability Managers

9/27/12 57

 Zn1vol,
 Perimeter_ZN_1,
 Zone Air Volume;

 EnergyManagementSystem:InternalVariable,
 Zn2vol,
 Perimeter_ZN_2,
 Zone Air Volume;

 EnergyManagementSystem:InternalVariable,
 Zn3vol,
 Perimeter_ZN_3,
 Zone Air Volume;

 EnergyManagementSystem:InternalVariable,
 Zn4vol,
 Perimeter_ZN_4,
 Zone Air Volume;

 EnergyManagementSystem:InternalVariable,
 Zn5vol,
 Core_ZN ,
 Zone Air Volume;

 EnergyManagementSystem:Program,
 AverageZoneTemps , ! Name
 SET SumNumerator = T1*Zn1vol + T2*Zn2vol + T3*Zn3vol + T4*Zn4vol +
T5*Zn5vol,
 SET SumDenominator = Zn1vol + Zn2vol + Zn3vol + Zn4vol + Zn5vol,
 SET AverageBuildingTemp = SumNumerator / SumDenominator;

 Output:EnergyManagementSystem,
 Verbose,
 Verbose,
 Verbose;

 Output:Variable,
 *, !- Key Value
 Weighted Average Building Zone Air Temperature, !- Variable Name
 timestep; !- Reporting Frequency

Example 2. Traditional Setpoint and Availability Managers

Problem Statement

The traditional way of modeling supervisory control of HVAC systems in EnergyPlus is to use
SetpointManagers and AvailabilityManagers. To gain experience with EMS, we should ask, Is
there a way to take a model such as the Benchmark Large Office and replicate the traditional
HVAC managers by using only the EMS?

EMS Design Discussion

A review of the example file shows that three types of traditional HVAC managers are being
used: scheduled setpoints, mixed air setpoints, and night cycle availability. We will discuss
these separately.

The input object SetpointManager:Scheduled functions by placing a setpoint value on a
specified node based on the value in a schedule. Therefore, our EMS program will do the
same. First we will need to access the schedule. In this example, a schedule called
Seasonal-Reset-Supply-Air-Temp-Sch contains the temperature values desired for the air

EMS Examples Example 2. Traditional Setpoint and Availability Managers

9/27/12 58

system’s supply deck. We use an EnergyManagementSystem:Sensor object based on the
output variable called “Schedule Value” to fill schedule values into an Erl variable called
Seasonal_Reset_SAT_Sched. Once we have the sensor and actuator setup, putting the
setpoint on the node involves a single line of Erl code, “SET VAV_1_SAT_setpoint =
Seasonal_Reset_SAT_Sched.”

The input object SetpointManager:Mixed air functions by placing a setpoint value on a
specified node based on the value of the setpoint at another node and the temperature rise
across the fan. The temperature rise is found by taking the temperature at the fan outlet node
and subtracting the temperature at the fan inlet node. The EMS needs two additional sensors
to obtain these temperatures, which are set up by using a pair
EnergyManagementSystem:Sensor objects. The example file has three mixed air setpoint
managers that place setpoints on the outlet of the outdoor air mixer, the outlet of the cooling
coil, and the outlet of the heating coil. Therefore, we need three actuators to place setpoints
at these three nodes, which are set up using three EnergyManagementSystem:Actuator
objects. Each mixed air setpoint calculation is a simple single-line of program code such as
“SET VAV_1_CoolC_Setpoint = Seasonal_Reset_SAT_Sched - (T_VAV1FanOut -
T_VAV1FanIn).”

The input object AvailabilityManager:NightCycle functions by monitoring zone temperature
and starting up the air system (if needed) to keep the building within the thermostat range.
The sensors here are the zone air temperatures, which are set up by using
EnergyManagementSystem:Sensor objects in the same way as for Example 1. We will need
one zone temperature sensor for each zone that is served by the air system so we can
emulate the “CycleOnAny” model being used. The other sensors we need are the desired
zone temperatures used by the thermostat. We access these temperatures directly from the
schedules (HTGSETP_SCH and CLGSETP_SCH in the example) by using
EnergyManagementSystem:Sensor objects. To control the air system’s operation status, we
use an EnergyManagementSystem:Actuator object that is assigned to an “AirLoopHVAC”
component type using the control variable called “Availability Status.” EnergyPlus recognizes
four availability states that control the behavior of the air system. Inside EnergyPlus these are
integers, but EMS has only real-valued variables, so we will use the following whole numbers:

 NoAction = 0.0
 ForceOff = 1.0
 CycleOn = 2.0
 CycleOnZoneFansOnly = 3.0.

The traditional AvailabilityManager:NightCycle object operates by turning on the system for a
prescribed amount of time (1800 seconds in the example file), and then turning it off for the
same amount of time. You should be able to model this starting and stopping in EMS by
using Trend variables to record the history of the actions. However, this cycling is not
necessarily how real buildings are operated, and for this example we do not try to precisely
emulate the traditional EnergyPlus night cycle manager. Rather, we use a simpler
temperature-based control to start and stop the air system for the night cycle. The algorithm
first assumes an offset tolerance of 0.83°C and calculates limits for when heating should turn
on and off and when cooling should turn on and off. It then finds the maximum and minimum
zone temperatures for all the zones attached to the air system. These use the @Max and
@Min built-in functions, which take on two operators at a time. Then a series of logic
statements is used to compare temperatures and decide what the availability status of the air
system should be.

EMS Input Objects

EMS examples are provided for the three types of traditional HVAC managers. The full set to
run with no traditional managers is provided in the example file
“EMSReplaceTraditionalManagers_LargeOffice.idf.”

EMS Examples Example 2. Traditional Setpoint and Availability Managers

9/27/12 59

Example input objects that replicate a scheduled setpoint manager using EMS follow.
EnergyManagementSystem:Sensor,
 Seasonal_Reset_SAT_Sched, !Name
 Seasonal-Reset-Supply-Air-Temp-Sch , ! Output:Variable Index Key Name
 Schedule Value; ! Output:Variable or Output:Meter Name

EnergyManagementSystem:Actuator,
 VAV_1_SAT_setpoint, ! Name
 VAV_1 Supply Equipment Outlet Node, ! Component Name
 System Node Setpoint, ! Component Type
 Temperature Setpoint; ! Control Variable

EnergyManagementSystem:Program,
 VAV_1_SchedSetpoint , ! Name
 SET VAV_1_SAT_setpoint = Seasonal_Reset_SAT_Sched;

Example input objects that replicate a mixed air setpoint manager using EMS follow.
EnergyManagementSystem:Sensor,
 T_VAV1FanIn, !Name
 VAV_1_HeatC-VAV_1_FanNode , ! Output:Variable or Output:Meter Index Key
Name
 System Node Temp ; ! Output:Variable or Output:Meter Name

EnergyManagementSystem:Sensor,
 T_VAV1FanOut, !Name
 VAV_1 Supply Equipment Outlet Node, ! Output:Variable or Output:Meter
Index Key Name
 System Node Temp ; ! Output:Variable or Output:Meter Name

EnergyManagementSystem:Actuator,
 VAV_1_CoolC_Setpoint, ! Name
 VAV_1_CoolC-VAV_1_HeatCNode , ! Component Name
 System Node Setpoint, ! Component Type
 Temperature Setpoint; ! Control Variable

EnergyManagementSystem:Actuator,
 VAV_1_HeatC_Setpoint, ! Name
 VAV_1_HeatC-VAV_1_FanNode , ! Component Name
 System Node Setpoint, ! Component Type
 Temperature Setpoint; ! Control Variable

EnergyManagementSystem:Actuator,
 VAV_1_OA_Setpoint, ! Name
 VAV_1_OA-VAV_1_CoolCNode , ! Component Name
 System Node Setpoint, ! Component Type
 Temperature Setpoint; ! Control Variable

EnergyManagementSystem:Program,
 VAV1MixedAirManagers , ! Name
 SET VAV_1_CoolC_Setpoint = Seasonal_Reset_SAT_Sched - (T_VAV1FanOut -
T_VAV1FanIn),
 SET VAV_1_HeatC_Setpoint = Seasonal_Reset_SAT_Sched - (T_VAV1FanOut -
T_VAV1FanIn),
 SET VAV_1_OA_Setpoint = Seasonal_Reset_SAT_Sched - (T_VAV1FanOut -
T_VAV1FanIn);

Example input objects for a night cycle availability manager follow.
EnergyManagementSystem:Actuator,
 VAV_1_NightCycleStatus, ! Name
 VAV_1, ! Component Name

EMS Examples Example 2. Traditional Setpoint and Availability Managers

9/27/12 60

 AirLoopHVAC, ! Component Type
 Availability Status; ! Control Variable

EnergyManagementSystem:Sensor,
 heating_setpoint, ! Name
 HTGSETP_SCH , ! Output:Variable or Output:Meter Index Key Name
 Schedule Value ; ! Output:Variable or Output:Meter Name

EnergyManagementSystem:Sensor,
 cooling_setpoint, ! Name
 CLGSETP_SCH , ! Output:Variable or Output:Meter Index Key Name
 Schedule Value ; ! Output:Variable or Output:Meter Name

EnergyManagementSystem:Sensor,
 TzoneVAV1_1, ! Name
 Core_bottom , ! Output:Variable or Output:Meter Index Key Name
 Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name

EnergyManagementSystem:Sensor,
 TzoneVAV1_2, ! Name
 Perimeter_bot_ZN_3 , ! Output:Variable or Output:Meter Index Key
Name
 Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name

EnergyManagementSystem:Sensor,
 TzoneVAV1_3, ! Name
 Perimeter_bot_ZN_2 , ! Output:Variable or Output:Meter Index Key
Name
 Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name

EnergyManagementSystem:Sensor,
 TzoneVAV1_4, ! Name
 Perimeter_bot_ZN_1 , ! Output:Variable or Output:Meter Index Key
Name
 Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name

EnergyManagementSystem:Sensor,
 TzoneVAV1_5, ! Name
 Perimeter_bot_ZN_4 , ! Output:Variable or Output:Meter Index Key
Name
 Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name

EnergyManagementSystem:Program,
 VAV_1_NightCycleMGR , ! Name
 SET Toffset = 0.8333 , ! 1.5F
 SET NoAction = 0.0 ,
 SET ForceOff = 1.0 ,
 SET CycleOn = 2.0 ,
 SET CycleOnZoneFansOnly = 3.0 ,
 SET VAV1_heating_TurnOn = heating_setpoint - Toffset ,
 SET VAV1_heating_TurnOff = heating_setpoint + Toffset ,
 SET VAV1_cooling_TurnOn = cooling_setpoint + Toffset ,
 SET VAV1_cooling_TurnOff = cooling_setpoint - Toffset ,
 ! find max and min for "cycleOnAny" operation
 SET Tmin = @MIN TzoneVAV1_1 TzoneVAV1_2 ,
 SET Tmin = @MIN Tmin TzoneVAV1_3 ,
 SET Tmin = @MIN Tmin TzoneVAV1_4 ,
 SET Tmin = @MIN Tmin TzoneVAV1_5 ,
 SET Tmax = @MAX TzoneVAV1_1 TzoneVAV1_2 ,
 SET Tmax = @MAX Tmax TzoneVAV1_3 ,
 SET Tmax = @MAX Tmax TzoneVAV1_4 ,

EMS Examples Example 3. Hygro-thermal Window Opening Control for Airflow Network

9/27/12 61

 SET Tmax = @MAX Tmax TzoneVAV1_5 ,
 IF Tmin < VAV1_heating_TurnOn ,
 SET VAV_1_NightCycleStatus = CycleOn,
 RETURN, ! need to exit early or cooling check could also trigger
 ELSEIF Tmin > VAV1_heating_TurnOff,
 SET VAV_1_NightCycleStatus = NoAction,
 ENDIF,
 IF Tmax > VAV1_cooling_TurnOn,
 SET VAV_1_NightCycleStatus = CycleOn,
 ELSEIF Tmax < VAV1_cooling_TurnOff,
 SET VAV_1_NightCycleStatus = NoAction ,
 ENDIF;

Example 3. Hygro-thermal Window Opening Control for Airflow Network

Problem Statement

A user of EnergyPlus version 3.1 posted the following question on the Yahoo! list (circa
spring 2009):

I am currently trying to model a simple ventilation system based on an
exhaust fan and outdoor air variable aperture paths that open according to
the indoor relative humidity.
As I didn't find any object to directly do this, I am trying to use an
AirflowNetwork: MultiZone: Component: DetailedOpening object and its
AirflowNetwork: multizone: Surface object to model the variable aperture. But
the Ventilation Control Mode of the surface object can only be done via
Temperature or Enthalpy controls (or other not interesting for my purpose),
and not via humidity.
So my questions are:
1- is it possible to make the surface object variable according to the
relative humidity? (maybe adapting the program?)
2- or is there an other way to make it?

Because the traditional EnergyPlus controls for window openings do not support humidity-
based controls (or did not as of Version 3.1), the correct response to Question #1 was “No.”
But with the EMS, we can now answer Question #2 as “Yes.” How can we take the example
file called HybridVentilationControl.idf and implement humidity-based control for a detailed
opening in the airflow network model?

EMS Design Discussion

The main EMS sensor will be the zone air humidity, so we use an
EnergyManagementSystem:Sensor object that maps to the output variable called System
Node Relative Humidity for the zone’s air node. This zone has the detailed opening.

The EMS will actuate the opening in an airflow network that is defined by the input object
AirflowNetwork:MultiZone:Component:DetailedOpening. The program will setup the actuator
for this internally, but we need to use an EnergyManagementSystem:Actuator object to
declare that we want to use the actuator and provide the variable name we want for the Erl
programs.

Because we do not know the exactly what the user had in mind, for this example we assume
that the desired behavior for the opening area is that the opening should vary linearly with

EMS Examples Example 4. Halt Program Based on Constraint

9/27/12 62

room air relative humidity. When the humidity increases, we want the opening to be larger.
When the humidity decreases, we want the opening to be smaller. For relative humidity below
25% we close the opening. At 60% or higher relative humidity, the opening should be
completely open. We formulate a model equation for opening factor as

0.0 25%
25 25% 60%

60 25
1.0 60%

open

RH
RHF RH

RH

<
 −= ≤ ≤ −

>

EMS Input Objects

EMS-related input objects to solve this problem are listed below and are included in the
example file called “EMSAirflowNetworkOpeningControlByHumidity.idf.”
EnergyManagementSystem:Sensor,
 ZoneRH , ! Name
 Zone 1 Node, ! Output:Variable or Output:Meter Index Key Name
 System Node Relative Humidity; ! Output:Variable or Output:Meter Name

EnergyManagementSystem:Actuator,
 MyOpenFactor, ! Name
 Zn001:Wall001:Win001, ! Component Name
 AirFlow Network Window/Door Opening, ! Component Type
 Venting Opening Factor; ! Control Type

EnergyManagementSystem:ProgramCallingManager,
 RH Controlled Open Factor , ! Name
 BeginTimestepBeforePredictor , ! EnergyPlus Model Calling Point
 RH_OpeningController ; ! Program Name 1

EnergyManagementSystem:Program,
 RH_OpeningController , ! Name
 IF ZoneRH < 25,
 SET MyOpenFactor = 0.0 ,
 ELSEIF ZoneRH > 60,
 SET MyOpenFactor = 1.0 ,
 ELSE,
 SET MyOpenFactor = (ZoneRH - 25) / (60 - 25),
 ENDIF;

Output:EnergyManagementSystem,
 Verbose,
 Verbose,
 Verbose;

Example 4. Halt Program Based on Constraint

Problem Statement

Heavy users of EnergyPlus explore the enormous parameter space associated with building
design options. Computational requirements often limit what can be accomplished in a given
study. For optimizations and other parametric studies, there is usually a tension between
having a very detailed model that is comfortably accurate, and a simpler model that executes
faster.

EMS Examples Example 4. Halt Program Based on Constraint

9/27/12 63

For most studies many trial simulations are discarded because they violate some constraint.
To save computation time, you might consider “fatal–out” simulations where early
calculations show that some predetermined constraints will not be met in the final result.
Many studies could save considerable computing resources by prematurely quitting models
rather than always letting each simulation run to completion. All types of constraints such as
poor comfort, excessive system iterations, and high energy costs could be used to kill a run.
You should ask, Is there a way to use the EMS to expedite my optimal searches by stopping
models prematurely if they fail some test?

EMS Design Discussion

As an example, let us assume that the criterion for early exit is that the model fails to be
sufficiently comfortable. We will start with the small office benchmark example file. Short
periods of discomfort are tolerated, but if the space is uncomfortable over time, we want to
abandon the simulation and save computational expense. A simulation can be stopped from
within an Erl program by calling the built-in function “@FatalHaltEp.” The EMS system has
only numeric data types, so we cannot generate text for the error message. Therefore, we
choose a particular real-numbered value to use as an error code that provides some detail on
which constraint caused early termination. In this example, we choose the value “1002.50” to
indicate an average PMV exceeds 2.5 and the value “9001.30” indicates the average PMV
less than 1.3. We will formulate the constraint by using the result of the Fanger comfort model
for PMV for the building’s core zone named “Core_ZN.” If the occupants will be too cold, we
will call @FatalHaltEp with the error code 9001.30. If the occupants will be too warm during a
summer design day, we will fatal out with the error code 1002.50. (These values were chosen
arbitrarily to demonstrate EMS; PMV of 1.3 is not necessarily a problem.)

To monitor PMV, we will use a trend variable, which we create by using the
EnergyManagementSystem:TrendVariable input object. A trend variable is a log of historical
values for Erl variables. A trend log is an array that goes farther and farther back in time. For
this example, we assume the constraint is to monitor the average PMV for the previous 2-
hour period. The example file has 6 timesteps per hour, so each trend point is 10 minutes
and a 2-hour average needs 12 timesteps. So the field Number of Timesteps to be Logged
must be 12 or larger. To access the values stored in a trend variable, the built-in functions
provided for accessing trends must be used. The @TrendAverage function called with an
index of 12 will return the 2-hour running average. To monitor this result of running average
PMV, we set up custom output variable using an EnergyManagementSystem:OutputVariable
input object.

EMS Input Objects

The EMS input objects for this example follow and are contained in the example file called
“EMSTestMAthAndKill.idf.”
 EnergyManagementSystem:ProgramCallingManager,
 Average Building Temperature , ! Name
 EndOfZoneTimestepBeforeZoneReporting , ! EnergyPlus Model Calling Point
 updateMy_averagePMV; ! Program Name 1

 EnergyManagementSystem:Sensor,
 PMV5, !Name
 Core_ZN , ! Output:Variable or Output:Meter Index Key Name
 FangerPMV ; ! Output:Variable or Output:Meter Name

 EnergyManagementSystem:TrendVariable,
 PMVtrendLog1,
 PMV5,
 300;

 EnergyManagementSystem:GlobalVariable,
 PMVrunningAvg;

EMS Examples Example 5. Computed Schedule

9/27/12 64

 EnergyManagementSystem:OutputVariable,
 Running Two Hour Average PMV [PMVunits], ! Name
 PMVrunningAvg, ! EMS Variable Name
 Averaged, ! Type of Data in Variable
 ZoneTimeStep ; ! Update Frequency

 EnergyManagementSystem:Program,
 UpdateMy_averagePMV,
 Set PMVrunningAvg = @TrendAverage PMVtrendLog1 12, ! two hour running
average.
 RUN Kill_Run_if_Uncomfortable;

 EnergyManagementSystem:Subroutine,
 Kill_Run_if_Uncomfortable,
 IF PMVrunningAvg > 2.5,
 SET tmpError = @FatalHaltEp 1002.50, ! error code "1002.50" for comfort
avg over 2.5
 ENDIF,
 IF PMVrunningAvg < 0.0 - 1.3,
 SET tmpError = @FatalHaltEp 9001.30, ! error code "9001.30" for comfort
avg under - 1.3
 ENDIF;

Example 5. Computed Schedule

Problem Statement

Many models have schedule inputs that could be used to control the object, but creating the
schedules it is too cumbersome. We need to ask, Can we use the EMS to dynamically
calculate a schedule?

EMS Design Discussion

As an example, we will take the model from example 1 and use the EMS to replicate the
heating and cooling zone temperature setpoint schedules. The input object
Schedule:Constant has been set up to be available as an actuator. We then add
EnergyManagementSystem:Actuator objects that set these actuators up as Erl variables.

To devise an Erl program to compute the schedule, we need to use the built-in variables that
describe time and day. The built-in variable Hour will provide information about the time of
day; DayOfWeek will provide information about whether it is the weekend or a weekday.

EMS Input Objects

Example EMS input for computing a schedule for heating and cooling setpoints follows and
are contained in the example file called “EMSCustomSchedule.idf.”
Schedule:Constant,
 CLGSETP_SCH,
 Temperature,
 24.0;

 EnergyManagementSystem:Actuator,
 myCLGSETP_SCH_Override,
 CLGSETP_SCH,Schedule:Constant,Schedule Value;

 EnergyManagementSystem:ProgramCallingManager,
 My Setpoint Schedule Calculator Example,
 BeginTimestepBeforePredictor,
 MyComputedCoolingSetpointProg,

EMS Examples Example 6. Window Shade Control

9/27/12 65

 MyComputedHeatingSetpointProg;

 EnergyManagementSystem:Program,
 MyComputedCoolingSetpointProg,
 IF (DayOfWeek == 1),
 Set myCLGSETP_SCH_Override = 30.0 ,
 ELSEIF (Holiday == 3.0) && (DayOfMonth == 21) && (Month == 1), !winter
design day
 Set myCLGSETP_SCH_Override = 30.0 ,
 ELSEIF HOUR < 6 ,
 Set myCLGSETP_SCH_Override = 30.0 ,
 ELSEIF (Hour >= 6) && (Hour < 22) && (DayOfWeek >=2) && (DayOfWeek <=6)
,
 Set myCLGSETP_SCH_Override = 24.0 ,
 ELSEIF (Hour >= 6) && (hour < 18) && (DayOfWeek == 7)
 Set myCLGSETP_SCH_Override = 24.0 ,
 ELSEIF (Hour >= 6) && (hour >= 18) && (DayOfWeek == 7)
 Set myCLGSETP_SCH_Override = 30.0 ,
 ELSEIF (Hour >= 22) ,
 Set myCLGSETP_SCH_Override = 30.0 ,
 ENDIF;

 Schedule:Constant,
 HTGSETP_SCH,
 Temperature,
 21.0;

 EnergyManagementSystem:Actuator,
 myHTGSETP_SCH,
 HTGSETP_SCH,Schedule:Constant,Schedule Value;

 EnergyManagementSystem:Program,
 MyComputedHeatingSetpointProg,
 Set locHour = Hour, ! echo out for debug
 Set locDay = DayOfWeek, ! echo out for debug
 Set locHol = Holiday, ! echo out for debug
 IF (DayOfWeek == 1),
 Set myHTGSETP_SCH = 15.6 ,
 ELSEIF (Holiday == 3.0) && (DayOfYear == 21), !winter design day
 Set myHTGSETP_SCH = 21.0 ,
 ELSEIF HOUR < 5 ,
 Set myHTGSETP_SCH = 15.6 ,
 ELSEIF (Hour >= 5) && (Hour < 19) && (DayOfWeek >=2) && (DayOfWeek <=6) ,
 Set myHTGSETP_SCH = 21.0 ,
 ELSEIF (Hour >= 6) && (hour < 17) && (DayOfWeek == 7),
 Set myHTGSETP_SCH = 21.0 ,
 ELSEIF (Hour >= 6) && (hour >= 17) && (DayOfWeek == 7) ,
 Set myHTGSETP_SCH = 15.6 ,
 ELSEIF (Hour >= 19) ,
 Set myHTGSETP_SCH = 15.6 ,
 ENDIF;

Example 6. Window Shade Control

Problem Statement

EnergyPlus offers a wide range of control options in the WindowProperty:ShadingControl
object, but it is easy to imagine custom schemes for controlling shades or blinds that are not
available. We need to ask, Can we use the EMS to override the shading controls?

EMS Examples Example 6. Window Shade Control

9/27/12 66

EMS Design Discussion

We will take the example file PurchAirWindowBlind.idf and use EMS to add a new control
scheme. This file has an interior blind that can be either “on” or “off.” The control scheme has
three parts:

 Deploy the blind whenever too much direct sun would enter the zone and cause
discomfort for the occupants.

 Deploy the blind whenever there is a significant cooling load.
 Leave the blind open whenever the first two constraints have not triggered.

We assume that a model for the direct sun control is based on incidence angle, where the
angle is defined as zero for normal incidence relative to the plane of the window. When the
direct solar incidence angle is less than 45 degrees, we want to draw the blind. EnergyPlus
has a report variable called “Surface Ext Solar Beam Cosine Of Incidence Angle,” for which
we will use a sensor in our EnergyManagementSystem:Sensor input object. This sensor is a
cosine value that we turn into an angle value with the built-in function @ArcCos. Then we will
use the built-in function @RadToDeg to convert from radians to degrees. This new
window/solar incidence angle in degree may be an interesting report variable, so we use an
EnergyManagementSystem:OutputVariable input object to create custom output.

Because the transmitted solar is a problem only when there is a cooling load, we also trigger
the blind based on the current data for cooling. The report variable called “Zone/Sys Sensible
Cooling Rate” is used in an EMS sensor to obtain an Erl variable with the most recent data
about zone cooling load required to meet setpoint. When this value is positive, we know the
zone cannot make good use of passive solar heating, so we close the blind.

The EMS actuator will override the operation of a WindowProperty:ShadingControl input
object. Related to this, the EDD file shows

! <EnergyManagementSystem:Actuator Available>, Component Unique Name, Component Type, Control Type
EnergyManagementSystem:Actuator Available,ZN001:WALL001:WIN001,Window Shading Control,Control Status

Although the user-defined name for the WindowProperty:ShadingControl is “INCIDENT
SOLAR ON BLIND,” the component unique name of the actuator that is available is called
“ZN001:WALL001:WIN001.” There could be multiple windows, all with shades, and each is
governed by a single WindowProperty:ShadingControl input object. The EMS actuator could
override each window separately. The Control Type is called “Control Status,” and requires
you to set the status to one of a set of possible control flags. For this case, with only an
interior shade, there are two states for the actuator to take. The first shows the shade is “off,”
and corresponds to a value of 0.0. The second shows the interior shade is “on,” and
corresponds to a value of 6.0.

EMS Input Objects

The EMS input objects for this example follow and are contained in the example file called
“EMSWindowShadeControl.idf.”
Output:EnergyManagementSystem,
 Verbose,
 Verbose,
 Verbose;

 EnergyManagementSystem:Sensor,
 Solar_Beam_Incident_Cos, !Name
 Zn001:Wall001:Win001,! Output:Variable or Output:Meter Index Key Name
 Surface Ext Solar Beam Cosine Of Incidence Angle; ! Output:Variable or
Output:Meter Name

 Output:Variable, Zn001:Wall001:Win001, Surface Ext Solar Beam Cosine Of
Incidence Angle, Timestep;

EMS Examples Example 6. Window Shade Control

9/27/12 67

 EnergyManagementSystem:Sensor,
 Zone_Sensible_Cool_Rate, !Name
 RESISTIVE ZONE,! Output:Variable or Output:Meter Index Key Name
 Zone/Sys Sensible Cooling Rate; ! Output:Variable or Output:Meter Name

 Output:Variable, RESISTIVE ZONE, Zone/Sys Sensible Cooling Rate, Timestep;

EnergyManagementSystem:ProgramCallingManager,
 Window Shading Device EMS Controller, ! Name
 BeginTimestepBeforePredictor , ! EnergyPlus Model Calling Point
 Set_Shade_Control_State ; ! Program Name 1

EnergyManagementSystem:Actuator,
 Zn001_Wall001_Win001_Shading_Deploy_Status, ! Name
 Zn001:Wall001:Win001, ! Component Name Surface name with
shade controls
 Window Shade Control, ! Component Type
 Control Status; ! Control Type

EnergyManagementSystem:Program,
 Set_Shade_Control_State, ! Name
 !
 Set IncidentAngleRad = @ArcCos Solar_Beam_Incident_Cos,
 Set IncidentAngle = @RadToDeg IncidentAngleRad,
 !
 IF IncidentAngle < 45 , ! Block intense direct sun
 Set Zn001_Wall001_Win001_Shading_Deploy_Status =
Shade_Status_Interior_Blind_On,
 ELSEIF Zone_Sensible_Cool_Rate > 20, ! block to reduce cooling loads
 Set Zn001_Wall001_Win001_Shading_Deploy_Status =
Shade_Status_Interior_Blind_On,
 Else,
 Set Zn001_Wall001_Win001_Shading_Deploy_Status = Shade_Status_Off ,
 ENDIF ;

EnergyManagementSystem:OutputVariable,
 Erl Shading Control Status, ! Name
 Zn001_Wall001_Win001_Shading_Deploy_Status, ! EMS Variable Name
 Averaged, ! Type of Data in Variable
 ZoneTimeStep ; ! Update Frequency

EnergyManagementSystem:OutputVariable,
 Erl Zn001:Wall001:Win001 Incident Angle, ! Name
 IncidentAngle, ! EMS Variable Name
 Averaged, ! Type of Data in Variable
 ZoneTimeStep ; ! Update Frequency

 EnergyManagementSystem:GlobalVariable, IncidentAngle;

Output:Variable,
 *,
 Erl Shading Control Status,
 Timestep;

Output:Variable,
 *,
 Erl Zn001:Wall001:Win001 Incident Angle,
 Timestep;

EnergyManagementSystem:ProgramCallingManager,

EMS Examples Example 6. Window Shade Control

9/27/12 68

 Init Window Shading Device Control Constants, ! Name
 BeginNewEnvironment , ! EnergyPlus Model Calling Point
 InitializeShadeControlFlags ; ! Program Name 1

 EnergyManagementSystem:GlobalVariable, Shade_Status_None;
 EnergyManagementSystem:GlobalVariable, Shade_Status_Off ;
 EnergyManagementSystem:GlobalVariable, Shade_Status_Interior_Shade_On;
 EnergyManagementSystem:GlobalVariable, Shade_Status_Switchable_Dark;
 EnergyManagementSystem:GlobalVariable, Shade_Status_Exterior_Shade_On;
 EnergyManagementSystem:GlobalVariable, Shade_Status_Interior_Blind_On;
 EnergyManagementSystem:GlobalVariable, Shade_Status_Exterior_Blind_On;
 EnergyManagementSystem:GlobalVariable,
Shade_Status_Between_Glass_Shade_On;
 EnergyManagementSystem:GlobalVariable,
Shade_Status_Between_Glass_Blind_On;

 EnergyManagementSystem:Program,
 InitializeShadeControlFlags,
 ! these are control flag values used inside EnergyPlus for window
shades
 ! EMS control of window shading devices involves setting the
control values for shading control actuators with
 ! one of these values. The variable names can be used or replaced,
it is the whole number values that trigger
 ! changes in the modeling.
 ! Shades and Blinds are either fully on or fully off, partial
positions require multiple windows.
 ! the window shading control flag values follow
 ! -1: if window has no shading device
 Set Shade_Status_None = 0.0 - 1.0, ! this is how to write a negative
number Erl does not have unary "minus," only binary subtraction
 ! 0: if shading device is off
 Set Shade_Status_Off = 0.0,
 ! 1: if interior shade is on
 Set Shade_Status_Interior_Shade_On = 1.0,
 ! 2: if glazing is switched to darker state
 Set Shade_Status_Switchable_Dark = 2.0,
 ! 3: if exterior shade is on
 Set Shade_Status_Exterior_Shade_On = 3.0,
 ! 6: if interior blind is on
 Set Shade_Status_Interior_Blind_On = 6.0,
 ! 7: if exterior blind is on
 Set Shade_Status_Exterior_Blind_On = 6.0,
 ! 8: if between-glass shade is on
 Set Shade_Status_Between_Glass_Shade_On = 8.0,
 ! 9: if between-glass blind is on
 Set Shade_Status_Between_Glass_Blind_On = 9.0;
 ! 10: window has interior shade that is off but may be triggered
on later
 ! to control daylight glare
 ! 20: window has switchable glazing that is unswitched but may be
switched later
 ! to control daylight glare or daylight illuminance
 ! 30: window has exterior shade that is off but may be triggered
on later
 ! to control daylaight glare or daylight illuminance
 ! 60: window has interior blind that is off but may be triggered
on later
 ! to control daylaight glare or daylight illuminance
 ! 70: window has exterior blind that is off but may be triggered
on later
 ! to control daylaight glare or daylight illuminance

EMS Examples Example 7. Constant Volume Purchased Air System

9/27/12 69

 ! 80: window has between-glass shade that is off but may be
triggered on later
 ! to control daylaight glare or daylight illuminance
 ! 90: window has between-glass blind that is off but may be
triggered on later
 ! to control daylaight glare or daylight illuminance
 ! A "shading device" may be an exterior, interior or between-glass
shade or blind,
 ! or the lower-transmitting (dark) state of switchable glazing
(e.g., electrochromic).
 ! In all cases, the unshaded condition is represented
 ! by the construction given by window's Surface()%Construction and
 ! the shaded condition is represented by the construction given by
 ! the window's Surface()%ShadedConstruction

Example 7. Constant Volume Purchased Air System

Problem Statement

The simplest way to add HVAC control to an EnergyPlus thermal zone is to use the
ZoneHVAC:IdealLoadsAirSystem. This was called purchased air in older versions. The ideal
loads air system is intended for load calculations. You provide input for the supply air
conditions of drybulb and humidity ratio, but the flow rate cannot be controlled. The model
operates by varying the flow rate to exactly meet the desired setpoints. However, you may
want to experiment with various designs in a slightly different way in which, given a
prescribed supply air situation, then adjust the design to maximize the thermal comfort. It
would be interesting to use the simple-to-input purchased air model to examine how a zone
responds to a system, rather than how the system responds to a zone. We should ask, Can
we use the EMS to prescribe the supply air flow rates for a purchased air model?

EMS Design Discussion

For this example we begin with the input file from Example 6 (primarily because it already has
purchased air). We examine the typical mass flow rates the air system provides to have some
data to judge what an appropriate constant flow rate might be. A cursory review of the data
indicates that cooling flow rates of 0.3 kg/s are chosen for two zones and 0.4 kg/s is chosen
for the third. Heating flow rates of 0.1 and 0.15 kg/s are also chosen.

We want the model to respond differently for heating and cooling. We define two operating
states and create global variables to hold that state for each zone. The first state is when the
zone calls for heating; we will assign a value of 1.0. The second is when the zone calls for
cooling; we assign 2.0.

To sense the state we will use EMS sensors associated with the output variable called
“Zone/Sys Sensible Load Predicted.” We will set up one of these for each zone and use it as
input data. If this value is less than zero, the zone is in the cooling state. If it is greater than
zero, the zone is in the heating state. This predicted load is calculated during the predictor
part of the model, so we choose the EMS calling point called
“AfterPredictorAfterHVACManagers.”

An EMS actuator is available for the ideal loads air system that overrides the air mass flow
rate (kg/s) delivered by the system when it is on. The override is not absolute in that the
model will still apply the limits defined in the input object and overrides only if the system is
“on.” The internal logic will turn off the air system if the zone is in the thermostat dead band
or scheduled “off” by availability managers. This “off” state is modeled inside the ideal loads
air system so it does not need to be calculated in Erl. This control leads to a constant volume

EMS Examples Example 7. Constant Volume Purchased Air System

9/27/12 70

system that cycles in an attempt to control the zone conditions. In practice, it can achieve
relatively good control when loads do not exceed the available capacity.

EMS Input Objects

A set of EMS input objects for a constant volume purchased air system serving three zones
follows are contained in the example file called “EMSConstantVolumePurchAir.idf.”
EnergyManagementSystem:ProgramCallingManager,
 Constant Volume Purchased Air Example, ! Name
 AfterPredictorAfterHVACManagers , ! EnergyPlus Model Calling Point
 Determine_Purch_Air_State, ! Program Name 1
 Set_Purch_Air;

EnergyManagementSystem:Program,
 Determine_Purch_Air_State, ! Name
 ! State representation: 1.0 is heating, 2.0 is cooling
 IF (Sensible_Load_Zone_1 <= 0.0) ,
 SET Zone_1_State = 2.0,
 ELSEIF (Sensible_Load_Zone_1 > 0.0) ,
 SET Zone_1_State = 1.0,
 ENDIF,
 IF (Sensible_Load_Zone_2 <= 0.0) ,
 SET Zone_2_State = 2.0,
 ELSEIF (Sensible_Load_Zone_2 > 0.0) ,
 SET Zone_2_State = 1.0,
 ENDIF,
 IF (Sensible_Load_Zone_3 <= 0.0) ,
 SET Zone_3_State = 2.0,
 ELSEIF (Sensible_Load_Zone_3 > 0.0) ,
 SET Zone_3_State = 1.0,
 ENDIF;

 EnergyManagementSystem:Program,
 Set_Purch_Air,
 IF (Zone_1_State == 2.0),
 SET ZONE_1_AIR_Mdot = 0.3,
 ELSEIF (Zone_1_State == 1.0),
 SET ZONE_1_AIR_Mdot = 0.1,
 ENDIF,
 IF (Zone_2_State == 2.0),
 SET ZONE_2_AIR_Mdot = 0.3,
 ELSEIF (Zone_2_State == 1.0),
 SET ZONE_2_AIR_Mdot = 0.1,
 ENDIF,
 IF (Zone_3_State == 2.0),
 SET ZONE_3_AIR_Mdot = 0.4,
 ELSEIF (Zone_3_State == 1.0),
 SET ZONE_3_AIR_Mdot = 0.15,
 ENDIF;

 EnergyManagementSystem:GlobalVariable, Zone_1_State;
 EnergyManagementSystem:GlobalVariable, Zone_2_State;
 EnergyManagementSystem:GlobalVariable, Zone_3_State;

 EnergyManagementSystem:Actuator, ZONE_1_AIR_Mdot,ZONE1AIR,Ideal Loads Air
System,Air Mass Flow Rate;
 EnergyManagementSystem:Actuator, ZONE_2_AIR_Mdot,ZONE2AIR,Ideal Loads Air
System,Air Mass Flow Rate;
 EnergyManagementSystem:Actuator, ZONE_3_AIR_Mdot,ZONE3AIR,Ideal Loads Air
System,Air Mass Flow Rate;

 EnergyManagementSystem:Sensor,

EMS Examples Example 8. System Sizing with Discrete Package Sizes

9/27/12 71

 Sensible_Load_Zone_1, !Name
 RESISTIVE ZONE,! Output:Variable or Output:Meter Index Key Name
 Zone/Sys Sensible Load Predicted; ! Output:Variable or Output:Meter Name

 EnergyManagementSystem:Sensor,
 Sensible_Load_Zone_2, !Name
 EAST ZONE,! Output:Variable or Output:Meter Index Key Name
 Zone/Sys Sensible Load Predicted; ! Output:Variable or Output:Meter Name

 EnergyManagementSystem:Sensor,
 Sensible_Load_Zone_3, !Name
 NORTH ZONE,! Output:Variable or Output:Meter Index Key Name
 Zone/Sys Sensible Load Predicted; ! Output:Variable or Output:Meter Name

Example 8. System Sizing with Discrete Package Sizes

Problem Statement

One tension often arises with modeling when options being evaluated have an indirect effect
on air system size. In normal autosizing, the changes in sizes are continuous, but in real
systems, equipment sizes tend to be discrete. If we start with the Benchmark Strip Mall
model, we should ask, Could we use the EMS custom calculations to intervene and make the
final system sizing results follow the discrete sizes available for a particular product line of
equipment?

EMS Design Discussion

Examining the vendor’s literature for one line of commercial packaged single-zone HVAC air
systems shows that the nominal product sizes include 1200 cfm, 1600 cfm, 2000 cfm, 2400
cfm, 3000 cfm, 3400, cfm, and 4000 cfm. The literature also classifies units by tonnage of
cooling capacity; however, in EnergyPlus modeling it is simpler to classify by air flow rate
rather than by cooling capacity (because the direct expansion models have a tight range for
allowable cooling capacity per air flow rate and size themselves off the flow rate). We
construct the following simple model to select the next higher air flow rate product that uses
the volume flow determined during the usual autosizing calculations, sizeV ,and threshold
values taken from the nominal product sizes (in m3/s):

0.0 0.566 0.566

0.566 0.755 0.755

0.755 0.944 0.944

0.944 1.133 1.133

1.133 1.416 1.416

1.416 1.604 1.604

1.604 1.888 1.888

size

size

size

size

size

size

size

V V

V V

V V

V V

V V

V V

V V

< ≤ =

< ≤ =

< ≤ =

< ≤ =

< ≤ =

< ≤ =

< ≤ =

The system sizing calculations determine a value for the volume flow rate. To obtain this
result for use in an Erl program, we use an EnergyManagementSystem:InternalVariable input
object to set up a variable for the data called “Intermediate Air System Main Supply Volume
Flow Rate.” We can then use this value in our algorithm to find a discrete system size.

EMS Examples Example 8. System Sizing with Discrete Package Sizes

9/27/12 72

Once we have the new system size, we need to set up an actuator to apply the new size. For
this we use an EnergyManagementSystem:Actuator input object to establish control over
“Sizing:System” type of component using the “Main Supply Volume Flow Rate” control type.

The EMS calling point for controlling air system sizing is called “EndOfSystemSizing.” So we
enter this into the program calling manager.

For this example, we modify the example file called
“BenchmarkStripMallNew_USA_IL_CHICAGO-OHARE.idf.” This file has 10 separate
packaged units, so rather than repeat the algorithm several times, we use a subroutine so the
same Erl code can be reused for each air system. The subroutine has two arguments that we
will declare as global variables: the input for continuous size and the output for the discrete
size.

EMS Input Objects

A set of input objects for EMS control for discrete resizing of 10 air systems follows and is
included in the example file called “EMSDiscreteAirSystemSizes.idf.”
Output:EnergyManagementSystem,
 Verbose,
 Verbose,
 Verbose;

EnergyManagementSystem:ProgramCallingManager,
 Apply Discrete Package Sizes to Air System Sizing , ! Name
 EndOfSystemSizing , ! EnergyPlus Model Calling Point
 Resize_PSZ_To_Match_Product_Availability; ! Program Name 1

EnergyManagementSystem:Program,
 Resize_PSZ_To_Match_Product_Availability , ! Name
 SET argMainVdot = PSZ_1_CalcMainSupVdot,
 RUN Select_Discrete_Nominal_Air_Flow,
 SET PSZ_1_MainSupVdotSet = argDiscreteMainVdot,
 SET argMainVdot = PSZ_2_CalcMainSupVdot,
 RUN Select_Discrete_Nominal_Air_Flow,
 SET PSZ_2_MainSupVdotSet = argDiscreteMainVdot,
 SET argMainVdot = PSZ_3_CalcMainSupVdot,
 RUN Select_Discrete_Nominal_Air_Flow,
 SET PSZ_3_MainSupVdotSet = argDiscreteMainVdot,
 SET argMainVdot = PSZ_4_CalcMainSupVdot,
 RUN Select_Discrete_Nominal_Air_Flow,
 SET PSZ_4_MainSupVdotSet = argDiscreteMainVdot,
 SET argMainVdot = PSZ_5_CalcMainSupVdot,
 RUN Select_Discrete_Nominal_Air_Flow,
 SET PSZ_5_MainSupVdotSet = argDiscreteMainVdot,
 SET argMainVdot = PSZ_6_CalcMainSupVdot,
 RUN Select_Discrete_Nominal_Air_Flow,
 SET PSZ_6_MainSupVdotSet = argDiscreteMainVdot,
 SET argMainVdot = PSZ_7_CalcMainSupVdot,
 RUN Select_Discrete_Nominal_Air_Flow,
 SET PSZ_7_MainSupVdotSet = argDiscreteMainVdot,
 SET argMainVdot = PSZ_8_CalcMainSupVdot,
 RUN Select_Discrete_Nominal_Air_Flow,
 SET PSZ_8_MainSupVdotSet = argDiscreteMainVdot,
 SET argMainVdot = PSZ_9_CalcMainSupVdot,
 RUN Select_Discrete_Nominal_Air_Flow,
 SET PSZ_9_MainSupVdotSet = argDiscreteMainVdot,
 SET argMainVdot = PSZ_10_CalcMainSupVdot,
 RUN Select_Discrete_Nominal_Air_Flow,
 SET PSZ_10_MainSupVdotSet = argDiscreteMainVdot;

EMS Examples Example 8. System Sizing with Discrete Package Sizes

9/27/12 73

EnergyManagementSystem:Subroutine,
 Select_Discrete_Nominal_Air_Flow,
 ! argMainVdot Input
 ! argDiscreteMainVdot Output
 IF (argMainVdot <= 0.56628) , ! 1200 cfm
 SET argDiscreteMainVdot = 0.56628 ,
 ELSEIF (argMainVdot > 0.56628) && (argMainVdot <= 0.75504) , ! 1600 CFM
 SET argDiscreteMainVdot = 0.75504 ,
 ELSEIF (argMainVdot > 0.75504) && (argMainVdot <= 0.9438) , ! 2000 CFM
 SET argDiscreteMainVdot = 0.9438 ,
 ELSEIF (argMainVdot > 0.9438) && (argMainVdot <= 1.13256) , ! 2400 CFM
 SET argDiscreteMainVdot = 1.13256 ,
 ELSEIF (argMainVdot > 1.13256) && (argMainVdot <= 1.4157) , ! 3000 CFM
 SET argDiscreteMainVdot = 1.4157 ,
 ELSEIF (argMainVdot > 1.4157) && (argMainVdot <= 1.60446) , ! 3400 CFM
 SET argDiscreteMainVdot = 1.60446 ,
 ELSEIF (argMainVdot > 1.60446) && (argMainVdot <= 1.8879) , ! 4000 CFM
 SET argDiscreteMainVdot = 1.8879 ,
 ELSEIF (argMainVdot > 1.8879), ! too high
 set dummy = @SevereWarnEP 666.0,
 ENDIF;

EnergyManagementSystem:GlobalVariable, argDiscreteMainVdot;
EnergyManagementSystem:GlobalVariable, argMainVdot;

EnergyManagementSystem:InternalVariable,
 PSZ_1_CalcMainSupVdot,
 PSZ-AC_1:1 ,
 Intermediate Air System Main Supply Volume Flow Rate;

EnergyManagementSystem:Actuator,
 PSZ_1_MainSupVdotSet, ! Name
 PSZ-AC_1:1 , ! Component Name
 Sizing:System, ! Component Type
 Main Supply Volume Flow Rate; ! Control Type

EnergyManagementSystem:InternalVariable,
 PSZ_2_CalcMainSupVdot,
 PSZ-AC_2:2 ,
 Intermediate Air System Main Supply Volume Flow Rate;

EnergyManagementSystem:Actuator,
 PSZ_2_MainSupVdotSet, ! Name
 PSZ-AC_2:2 , ! Component Name
 Sizing:System, ! Component Type
 Main Supply Volume Flow Rate; ! Control Type

EnergyManagementSystem:InternalVariable,
 PSZ_3_CalcMainSupVdot,
 PSZ-AC_3:3 ,
 Intermediate Air System Main Supply Volume Flow Rate;

EnergyManagementSystem:Actuator,
 PSZ_3_MainSupVdotSet, ! Name
 PSZ-AC_3:3 , ! Component Name
 Sizing:System, ! Component Type
 Main Supply Volume Flow Rate; ! Control Type

EnergyManagementSystem:InternalVariable,
 PSZ_4_CalcMainSupVdot,
 PSZ-AC_4:4 ,
 Intermediate Air System Main Supply Volume Flow Rate;

EMS Examples Example 8. System Sizing with Discrete Package Sizes

9/27/12 74

EnergyManagementSystem:Actuator,
 PSZ_4_MainSupVdotSet, ! Name
 PSZ-AC_4:4 , ! Component Name
 Sizing:System, ! Component Type
 Main Supply Volume Flow Rate; ! Control Type

EnergyManagementSystem:InternalVariable,
 PSZ_5_CalcMainSupVdot,
 PSZ-AC_5:5 ,
 Intermediate Air System Main Supply Volume Flow Rate;

EnergyManagementSystem:Actuator,
 PSZ_5_MainSupVdotSet, ! Name
 PSZ-AC_5:5 , ! Component Name
 Sizing:System, ! Component Type
 Main Supply Volume Flow Rate; ! Control Type

EnergyManagementSystem:InternalVariable,
 PSZ_6_CalcMainSupVdot,
 PSZ-AC_6:6 ,
 Intermediate Air System Main Supply Volume Flow Rate;

EnergyManagementSystem:Actuator,
 PSZ_6_MainSupVdotSet, ! Name
 PSZ-AC_6:6 , ! Component Name
 Sizing:System, ! Component Type
 Main Supply Volume Flow Rate; ! Control Type

EnergyManagementSystem:InternalVariable,
 PSZ_7_CalcMainSupVdot,
 PSZ-AC_7:7 ,
 Intermediate Air System Main Supply Volume Flow Rate;

EnergyManagementSystem:Actuator,
 PSZ_7_MainSupVdotSet, ! Name
 PSZ-AC_7:7 , ! Component Name
 Sizing:System, ! Component Type
 Main Supply Volume Flow Rate; ! Control Type

EnergyManagementSystem:InternalVariable,
 PSZ_8_CalcMainSupVdot,
 PSZ-AC_8:8 ,
 Intermediate Air System Main Supply Volume Flow Rate;

EnergyManagementSystem:Actuator,
 PSZ_8_MainSupVdotSet, ! Name
 PSZ-AC_8:8 , ! Component Name
 Sizing:System, ! Component Type
 Main Supply Volume Flow Rate; ! Control Type

EnergyManagementSystem:InternalVariable,
 PSZ_9_CalcMainSupVdot,
 PSZ-AC_9:9 ,
 Intermediate Air System Main Supply Volume Flow Rate;

EnergyManagementSystem:Actuator,
 PSZ_9_MainSupVdotSet, ! Name
 PSZ-AC_9:9 , ! Component Name
 Sizing:System, ! Component Type
 Main Supply Volume Flow Rate; ! Control Type

EnergyManagementSystem:InternalVariable,

EMS Examples Example 9. Demand Management

9/27/12 75

 PSZ_10_CalcMainSupVdot,
 PSZ-AC_10:10 ,
 Intermediate Air System Main Supply Volume Flow Rate;

EnergyManagementSystem:Actuator,
 PSZ_10_MainSupVdotSet, ! Name
 PSZ-AC_10:10 , ! Component Name
 Sizing:System, ! Component Type
 Main Supply Volume Flow Rate; ! Control Type

Example 9. Demand Management

Problem Statement

Demand management refers to controlling a building to reduce the peak electrical power
draws or otherwise improve the load profile from the perspective of the electric utility.
Managing electricity demand is an important application for EMS. We should ask, Can we
take the model from example 2 and use the EMS to add demand management?

EMS Design Discussion

Example 2 is a model of a large office building, but unfortunately the utility tariff is not a
demand-based rate. Therefore, we change to a different set of utility rate input objects so the
model has demand charges.

For this example, we assume that demand is managed by turning down the lights and
increasing the cooling setpoint. The EMS calling point chosen is
“BeginTimestepBeforePredictor” because it allows you to change the lighting power levels
and temperature setpoints before you predict the zone loads.

To manage the demand, we first need to develop some targets based on some a priori idea
of what level of demand should be considered “high.” Therefore, we first run the model
without demand management and note the simulation results for demand. There are many
ways to obtain the demand results, but one method is to obtain them from the tabular report
for Tariffs called “Native Variables.” In that report, the row called PeakDemand is the
demand used to calculate demand charges and is listed in kW. We will use these values to
construct a target level of demand for each month by taking these results and multiplying by
0.85 in an effort to reduce demand by 15%. For example, the demand for January was
1,154.01 kW, so we make our target level to be 0.85 * 1154.01 = 980.91 kW and the demand
for August was 1,555.20 kW, so the target is 0.85 * 1555.20 = 1,321.92 kW.

To develop our Erl program, we separate the overall task into two parts:

1) Determine the current state of demand management control.
2) Set the controls based on that control state.
We then divide the Erl programs into two main programs and give them descriptive names:
“Determine_Current_Demand_Manage_State”; “Dispatch_Demand_Changes_By_State.”

The Erl program to determine the control state determines the current status for the demand
management controls. You can record and manage the control state by setting the value of a
global variable called “argDmndMngrState.” For this example, we develop four control states
that represent four levels of demand management:

 Level 1 is assigned a value of 0.0 and represents no override to implement changes
to demand-related controls.

 Level 2 is assigned a value of 1.0 and represents moderately aggressive overrides
for demand-related controls.

EMS Examples Example 9. Demand Management

9/27/12 76

 Level 3 is assigned a value of 2.0 and represents more aggressive override.
 Level 4 is assigned a value of 3.0 and represents the most aggressive overrides.

We develop an algorithm for choosing the control state by assuming it should be a function of
how close the current power level is to the target power level, the current direction for
changes in power use, and the recent history of control state. The current demand is
obtained by using a sensor that is based on the “Total Electric Demand” output variable. This
current demand is compared to the target demand levels discussed as well as a “level 1”
demand level that is set to be 90% of the target. If the current demand is higher than the level
1 demand but lower than the target, the state will tend to be at level 1. If the current demand
is higher than the target, the current state will be either level 2 or level 3 depending on the
trend direction. However, we do not want the response to be too quick because it leads to too
much bouncing between control states. Therefore, we also introduce some numerical
damping with the behavior that once a control state is selected it should be selected for at
least two timesteps before dropping down to a lower level. This damping is modeled with the
help of a trend variable that records the control state over time so we can retrieve what the
control state was during the past two timesteps.

Once the control state is determined, the Erl programs will use EMS actuators to override
controls based on the state. The following table summarizes the control adjustments used in
our example for each control state.

Table 9. Example 9 Demand Management Adjustments by Control State

Control State
Lighting Power

Adjustment Factor
Cooling Thermostat Offset

0 None none
1 0.9 + 0.8ºC
2 0.8 + 1.5ºC
3 0.7 + 2.0ºC

For control state level 0, the actuators are all set to Null so they stop overriding controls and
return the model to normal operation.

To alter the lighting power density with EMS, you could use either a direct method that
employs a Lights actuator or an indirect method that modifies the lighting schedule. For this
example we use the direct method with EnergyManagementSystem:Actuator input objects
that enable you to override the Electric Power Level for each zone’s lights. We also set up
internal variables to obtain the Lighting Power Design Level for each Lights object. Finally,
we set up an EMS sensor to obtain the lighting schedule value to use in Erl programs. If the
demand management control state is 1, 2, or 3, we use the following model to determine a
new lighting power level:

Power = (Adjustment Factor) × (Lighting Power Design Level) × (Schedule Value)

There are also two ways to alter the cooling setpoint with EMS. To dynamically alter the
cooling setpoints, we modify the schedule rather than directly actuating Zone Temperature
Control actuators. Changing the schedule allows one actuator to override all the zones; the
more direct approach would require actuators for each zone. (This can be used to advantage
if different zones are to be managed differently.) The algorithm applies an offset depending
on the control state. In the input file, the schedule for cooling setpoints is called
CLGSETP_SCH, so we set up an actuator for this Schedule Value. Because the algorithm is
a simple offset from the original schedule, we need to keep track of the values in the original
schedule. We cannot use the same schedule as an input to the algorithm because once an
actuator overrides the schedule value it will corrupt the original schedule. This would be an

EMS Examples Example 9. Demand Management

9/27/12 77

example of a circular reference problem. Therefore, we make a copy of the cooling setpoint
schedule, naming it CLGSETP_SCH_Copy, and use the copy in a
EnergyManagementSystem:Sensor object to obtain the current scheduled value for the
setpoint. When we override the CLGSETP_SCH schedule, it will not corrupt the values from
the CLGSTEP_SCH_Copy schedule used as input.

EMS Input Objects

The main input objects that implement this example of demand management are listed below
and are included in the example file called “EMSDemandManager_LargeOffice.idf.” The
results indicate that demand management controls could reduce electricity costs by around
$40,000 or 10%.
EnergyManagementSystem:ProgramCallingManager,
 Demand Manager Demonstration,
 BeginTimestepBeforePredictor,
 Determine_Current_Demand_Manage_State,
 Dispatch_Demand_Controls_By_State;

EnergyManagementSystem:Program,
 Determine_Current_Demand_Manage_State,
 Set localDemand = CurntFacilityElectDemand / 1000.0 ,
 Set CurrntTrend = @TrendDirection FacilityElectTrend 4,
 IF (Month == 1) ,
 Set argTargetDemand = 0.85 * 1154.01,
 Set argCrntDmnd = localDemand,
 Set argTrendDirection = CurrntTrend,
 ELSEIF (Month == 2),
 Set argTargetDemand = 0.85 * 1150.85 ,
 Set argCrntDmnd = localDemand,
 Set argTrendDirection = CurrntTrend,
 ELSEIF (Month == 3),
 Set argTargetDemand = 0.85 * 1313.56 ,
 Set argCrntDmnd = localDemand,
 Set argTrendDirection = CurrntTrend,
 ELSEIF (Month == 4),
 Set argTargetDemand = 0.85 * 1364.28,
 Set argCrntDmnd = localDemand,
 Set argTrendDirection = CurrntTrend,
 ELSEIF (Month == 5),
 Set argTargetDemand = 0.85 * 1506.29 ,
 Set argCrntDmnd = localDemand,
 Set argTrendDirection = CurrntTrend,
 ELSEIF (Month == 6),
 Set argTargetDemand = 0.85 * 1516.93 ,
 Set argCrntDmnd = localDemand,
 Set argTrendDirection = CurrntTrend,

 ELSEIF (Month == 7),
 Set argTargetDemand = 0.85 * 1545.20 ,
 Set argCrntDmnd = localDemand,
 Set argTrendDirection = CurrntTrend,
 ELSEIF (Month == 8),
 Set argTargetDemand = 0.85 * 1555.20 ,
 Set argCrntDmnd = localDemand,
 Set argTrendDirection = CurrntTrend,
 ELSEIF (Month == 9),
 Set argTargetDemand = 0.85 * 1491.38 ,
 Set argCrntDmnd = localDemand,
 Set argTrendDirection = CurrntTrend,
 ELSEIF (Month == 10),
 Set argTargetDemand = 0.85 * 1402.86 ,
 Set argCrntDmnd = localDemand,

EMS Examples Example 9. Demand Management

9/27/12 78

 Set argTrendDirection = CurrntTrend,
 ELSEIF (Month == 11),
 Set argTargetDemand = 0.85 * 1418.69 ,
 Set argCrntDmnd = localDemand,
 Set argTrendDirection = CurrntTrend,
 ELSEIF (Month == 12),
 Set argTargetDemand = 0.85 * 1440.48 ,
 Set argCrntDmnd = localDemand,
 Set argTrendDirection = CurrntTrend,
 ENDIF,
 Run Find_Demand_State;

EnergyManagementSystem:Subroutine,
 Find_Demand_State,
 ! argTargetDemand Input kW level target
 ! argCrntDmnd Input kW level current
 ! argTrendDirection Input J/hour
 ! argDmndMngrState Output value code, 0.0 = no management,
 ! 1.0 = level 1 demand management
 ! 2.0 = level 2 demand
management
 ! 3.0 = level 3 demand
management
 Set DmndStateX1 = @TrendValue Demand_Mgr_State_Trend 1,
 Set DmndStateX2 = @TrendValue Demand_Mgr_State_Trend 2,
 Set Level1Demand = 0.9 * argTargetDemand,
 Set argCrntDmnd = argCrntDmnd,
 Set argTargetDemand = argTargetDemand,
 SET argDmndMngrState = DmndStateX1, ! initialize to last state then model
changes
 IF (argCrntDmnd > Level1Demand) && (argCrntDmnd <argTargetDemand) &&
(argTrendDirection > 0.0),

 IF DmndStateX1 <= 1.0,
 SET argDmndMngrState = 1.0,
 ELSEIF (DmndStateX1 == 2.0) && (DmndStateX2 < 2.0),
 SET argDmndMngrState = 2.0, ! go at least two timesteps at 2.0
 ELSEIF (DmndStateX1 == 3.0) && (DmndStateX2 == 3.0),
 SET argDmndMngrState = 2.0,
 ELSEIF (DmndStateX1 == 3.0) && (DmndStateX2 == 2.0),
 SET argDmndMngrState = 3.0, ! go at least two timesteps at 3.0
 ENDIF,

 ELSEIF (argCrntDmnd > argTargetDemand) && (argTrendDirection < 0.0),
 IF DmndStateX1 <= 2.0,
 SET argDmndMngrState = 2.0,
 ELSEIF (DmndStateX1 == 3.0) && (DmndStateX2 == 2.0) , ! go at least two
timesteps at 3.0
 SET argDmndMngrState = 3.0,
 ELSEIF (DmndStateX1 == 3.0) && (DmndStateX2 == 3.0),
 SET argDmndMngrState = 2.0,
 ENDIF,

 ELSEIF (argCrntDmnd > argTargetDemand) && (argTrendDirection >= 0.0),
 Set argDmndMngrState = 3.0,
 ENDIF;

EnergyManagementSystem:Program,
 Dispatch_Demand_Controls_By_State,
 IF (argDmndMngrState == 0.0),
 RUN Unset_Demand_Controls,
 ELSEIF (argDmndMngrState == 1.0),

EMS Examples Example 9. Demand Management

9/27/12 79

 RUN Set_Demand_Level1_Controls,
 ELSEIF (argDmndMngrState == 2.0),
 Run Set_Demand_Level2_Controls,
 ELSEIF (argDmndMngrState == 3.0),
 Run Set_Demand_Level3_Controls,
 ENDIF;

EnergyManagementSystem:Subroutine,
 Unset_Demand_Controls,
 SET Set_Cooling_Setpoint_Sched = Null,
 SET Set_Basement_Lights = Null,
 SET Set_Core_bottom_Lights = Null,
 SET Set_Core_mid_Lights = Null,
 SET Set_Core_top_Lights = Null,
 SET Set_Perimeter_bot_ZN_3_Lights = Null,
 SET Set_Perimeter_bot_ZN_2_Lights = Null,
 SET Set_Perimeter_bot_ZN_1_Lights = Null,
 SET Set_Perimeter_bot_ZN_4_Lights = Null,
 SET Set_Perimeter_mid_ZN_3_Lights = Null,
 SET Set_Perimeter_mid_ZN_2_Lights = Null,
 SET Set_Perimeter_mid_ZN_1_Lights = Null,
 SET Set_Perimeter_mid_ZN_4_Lights = Null,
 SET Set_Perimeter_top_ZN_3_Lights = Null,
 SET Set_Perimeter_top_ZN_2_Lights = Null,
 SET Set_Perimeter_top_ZN_1_Lights = Null,
 SET Set_Perimeter_top_ZN_4_Lights = Null;

EnergyManagementSystem:Subroutine,
 Set_Demand_Level1_Controls,
 ! set lighting power to 90% of what it would otherwise be
 SET Set_Cooling_Setpoint_Sched = Cooling_Setpoint_Sched + 0.8, ! add 0.8
deg C to cooling setpoint
 SET Set_Basement_Lights = 0.90 * Basement_Lights *
BLDG_LIGHT_SCH,
 SET Set_Core_bottom_Lights = 0.90 * Core_bottom_Lights *
BLDG_LIGHT_SCH,
 SET Set_Core_mid_Lights = 0.90 * Core_mid_Lights *
BLDG_LIGHT_SCH,
 SET Set_Core_top_Lights = 0.90 * Core_top_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_3_Lights = 0.90 * Perimeter_bot_ZN_3_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_2_Lights = 0.90 * Perimeter_bot_ZN_2_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_1_Lights = 0.90 * Perimeter_bot_ZN_1_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_4_Lights = 0.90 * Perimeter_bot_ZN_4_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_mid_ZN_3_Lights = 0.90 * Perimeter_mid_ZN_3_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_mid_ZN_2_Lights = 0.90 * Perimeter_mid_ZN_2_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_mid_ZN_1_Lights = 0.90 * Perimeter_mid_ZN_1_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_mid_ZN_4_Lights = 0.90 * Perimeter_mid_ZN_4_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_top_ZN_3_Lights = 0.90 * Perimeter_top_ZN_3_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_top_ZN_2_Lights = 0.90 * Perimeter_top_ZN_2_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_top_ZN_1_Lights = 0.90 * Perimeter_top_ZN_1_Lights *
BLDG_LIGHT_SCH,

EMS Examples Example 9. Demand Management

9/27/12 80

 SET Set_Perimeter_top_ZN_4_Lights = 0.90 * Perimeter_top_ZN_4_Lights *
BLDG_LIGHT_SCH;

EnergyManagementSystem:Subroutine,
 Set_Demand_Level2_Controls,
 ! set lighting power to 80% of what it would otherwise be
 SET Set_Cooling_Setpoint_Sched = Cooling_Setpoint_Sched + 1.5, ! add 1.5
deg C to cooling setpoint
 SET Set_Basement_Lights = 0.80 * Basement_Lights *
BLDG_LIGHT_SCH,
 SET Set_Core_bottom_Lights = 0.80 * Core_bottom_Lights *
BLDG_LIGHT_SCH,
 SET Set_Core_mid_Lights = 0.80 * Core_mid_Lights *
BLDG_LIGHT_SCH,
 SET Set_Core_top_Lights = 0.80 * Core_top_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_3_Lights = 0.80 * Perimeter_bot_ZN_3_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_2_Lights = 0.80 * Perimeter_bot_ZN_2_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_1_Lights = 0.80 * Perimeter_bot_ZN_1_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_4_Lights = 0.80 * Perimeter_bot_ZN_4_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_mid_ZN_3_Lights = 0.80 * Perimeter_mid_ZN_3_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_mid_ZN_2_Lights = 0.80 * Perimeter_mid_ZN_2_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_mid_ZN_1_Lights = 0.80 * Perimeter_mid_ZN_1_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_mid_ZN_4_Lights = 0.80 * Perimeter_mid_ZN_4_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_top_ZN_3_Lights = 0.80 * Perimeter_top_ZN_3_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_top_ZN_2_Lights = 0.80 * Perimeter_top_ZN_2_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_top_ZN_1_Lights = 0.80 * Perimeter_top_ZN_1_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_top_ZN_4_Lights = 0.80 * Perimeter_top_ZN_4_Lights *
BLDG_LIGHT_SCH;

EnergyManagementSystem:Subroutine,
 Set_Demand_Level3_Controls,
 ! set lighting power to 70% of what it would otherwise be
 SET Set_Cooling_Setpoint_Sched = Cooling_Setpoint_Sched + 2.0, ! add 2.0
deg C to cooling setpoint
 SET Set_Basement_Lights = 0.70 * Basement_Lights *
BLDG_LIGHT_SCH,
 SET Set_Core_bottom_Lights = 0.70 * Core_bottom_Lights *
BLDG_LIGHT_SCH,
 SET Set_Core_mid_Lights = 0.70 * Core_mid_Lights *
BLDG_LIGHT_SCH,
 SET Set_Core_top_Lights = 0.70 * Core_top_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_3_Lights = 0.70 * Perimeter_bot_ZN_3_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_2_Lights = 0.70 * Perimeter_bot_ZN_2_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_1_Lights = 0.70 * Perimeter_bot_ZN_1_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_bot_ZN_4_Lights = 0.70 * Perimeter_bot_ZN_4_Lights *
BLDG_LIGHT_SCH,

EMS Examples Example 9. Demand Management

9/27/12 81

 SET Set_Perimeter_mid_ZN_3_Lights = 0.70 * Perimeter_mid_ZN_3_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_mid_ZN_2_Lights = 0.70 * Perimeter_mid_ZN_2_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_mid_ZN_1_Lights = 0.70 * Perimeter_mid_ZN_1_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_mid_ZN_4_Lights = 0.70 * Perimeter_mid_ZN_4_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_top_ZN_3_Lights = 0.70 * Perimeter_top_ZN_3_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_top_ZN_2_Lights = 0.70 * Perimeter_top_ZN_2_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_top_ZN_1_Lights = 0.70 * Perimeter_top_ZN_1_Lights *
BLDG_LIGHT_SCH,
 SET Set_Perimeter_top_ZN_4_Lights = 0.70 * Perimeter_top_ZN_4_Lights *
BLDG_LIGHT_SCH;

EnergyManagementSystem:GlobalVariable,argTargetDemand;
EnergyManagementSystem:GlobalVariable,argCrntDmnd;
EnergyManagementSystem:GlobalVariable,argTrendDirection;
EnergyManagementSystem:GlobalVariable,argDmndMngrState;

EnergyManagementSystem:Sensor,
 BLDG_LIGHT_SCH, !- Name
 BLDG_LIGHT_SCH, !- Output:Variable or Output:Meter Index Key Name
 Schedule Value; !- Output:Variable or Output:Meter Name

EnergyManagementSystem:Sensor,
 CurntFacilityElectDemand, !- Name
 Whole Building, !- Output:Variable or Output:Meter Index Key Name
 Total Electric Demand; !- Output:Variable or Output:Meter Name

EnergyManagementSystem:TrendVariable,
 Demand_Mgr_State_Trend , !- Name
 argDmndMngrState, !- EMS Variable Name
 48 ; !- Number of Timesteps to be Logged

EnergyManagementSystem:TrendVariable,
 FacilityElectTrend , !- Name
 CurntFacilityElectDemand, !- EMS Variable Name
 144 ; !- Number of Timesteps to be Logged

EnergyManagementSystem:Sensor,
 Cooling_Setpoint_Sched, !- Name
 CLGSETP_SCH_Copy, !- Output:Variable or Output:Meter Index Key Name
 Schedule Value; !- Output:Variable or Output:Meter Name

EnergyManagementSystem:Actuator,
 Set_Cooling_Setpoint_Sched, !- Name
 CLGSETP_SCH , !- Actuated Component Unique Name
 Schedule:Compact, !- Actuated Component Type
 Schedule Value ; !- Actuated Component Control Type

EnergyManagementSystem:OutputVariable,
 Erl Cooling Setpoint [C], !- Name
 Set_Cooling_Setpoint_Sched, !- EMS Variable Name
 Averaged , !- Type of Data in Variable
 ZoneTimestep; !- Update Frequency

EMS Examples Example 10. Plant Loop Override Control

9/27/12 82

Output:Variable,
 *,
 Erl Cooling Setpoint,
 Timestep;

EnergyManagementSystem:Actuator,
 Set_Basement_Lights, !- Name
 Basement_Lights , !- Actuated Component Unique Name
 Lights, !- Actuated Component Type
 Electric Power Level; !- Actuated Component Control Type
EnergyManagementSystem:InternalVariable,
 Basement_Lights , !- Name
 Basement_Lights , !- Internal Data Index Key Name
 Lighting Power Design Level ; !- Internal Data Type

EnergyManagementSystem:Actuator,
 Set_Core_bottom_Lights, !- Name
 Core_bottom_Lights , !- Actuated Component Unique Name
 Lights, !- Actuated Component Type
 Electric Power Level; !- Actuated Component Control Type
EnergyManagementSystem:InternalVariable,
 Core_bottom_Lights , !- Name
 Core_bottom_Lights , !- Internal Data Index Key Name
 Lighting Power Design Level ; !- Internal Data Type

<< Snipped remaining Lights Sensors and Actuators >>

Example 10. Plant Loop Override Control

Problem Statement

A common occurrence in EnergyPlus central plant simulations is for a component to be
designed well, but during the course of an annual simulation, it is operated outside of its
allowable region. This is due to the governing control strategies (operating schemes). These
operation schemes may not have the intelligence to say, turn off a cooling tower when the
outdoor temperature is too low.
Within the EnergyPlus example files, the cooling tower offers warnings stating that the tower
temperature is going below a low temperature limit. We should ask, can we use a simple
EMS addition to an input file to override the loop and turn off the cooling tower to avoid these
situations and therefore the warnings?

EMS Design Discussion

For this example, we will start with the example file that is packaged with EnergyPlus called
EcoRoofOrlando.idf. This is one example of an input file where a cooling tower throws
warnings due to operating at too low of a temperature. Although the input file has many
aspects related to zone and HVAC, we will only be interested in the loop containing the
tower, which is a CondenserLoop named Chiller Plant Condenser Loop. The loop has a
minimum loop temperature of 5 degrees Celsius, as specified by the CondenserLoop object.

In order to avoid these warnings and properly shut off the tower, EMS will be used to check
the outdoor temperature and shut down the whole loop. Special care must be taken when
manipulating plant and condenser loops with EMS. The most robust way found is to both
disable the loop equipment and also override (turn off) the loop. Skipping either of these can
cause mismatches where either components are still expecting flow but the pump is not
running, or the pump is trying to force flow through components which are disabled. Either of
these cases can cause unstable conditions and possibly fatal flow errors.

EMS Examples Example 10. Plant Loop Override Control

9/27/12 83

The outdoor air temperature must be checked in order to determine what the EMS needs to
do at a particular point in the simulation. This is handled by use of an EMS sensor monitoring
the Outdoor Dry Bulb standard E+ output variable.

To manage the loop and pump, actuators are employed on both. The pump actuator is a
mass flow rate override. This can be used to set the flow to zero, effectively shutting off the
pump. The loop actuator is an on/off supervisory control, which allows you to “shut the entire
loop down.” This actuator will not actually shut the loop down, it effectively empties the
equipment availability list, so that there is no equipment available to reject/absorb load on the
supply side. If you use this actuator alone to “shut down the loop,” you may find that the
pump is still flowing fluid around the loop, but the equipment will not be running.

The EMS calling point chosen is “InsideHVACSystemIterationLoop,” so that the operation will
be updated every time the plant loops are simulated.

The Erl program is quite simple for this case. If the outdoor dry bulb temperature goes below
a certain value, the loop and pump actuators are set to zero. If the outdoor temperature is
equal to or above this value, the actuators are set to Null, relinquishing control back to the
regular operation schemes. In modifying this specific input file it was found that the outdoor
dry bulb temperature which removed these warnings was six degrees Celsius. We also
create a custom output variable called “EMS Condenser Flow Override On” to easily record
when the overrides have occurred.

EMS Input Objects

The main input objects that implement this example of plant loop control are listed below and
are included in the example file called “EMSPlantLoopOverrideControl.idf.” The addition of
the EMS objects properly shuts down the loop as the outdoor temperature go below the
transition value, and the simulation error file shows no warnings for the tower outlet
temperature.
 EnergyManagementSystem:Sensor,
 OutdoorTemp, !- Name
 Environment, !- Output:Variable Index Key Name
 Outdoor Dry Bulb; !- Output:Variable Name

 EnergyManagementSystem:Actuator,
 Actuator_Loop, !- Name
 Chiller Plant Condenser Loop, !- Actuated Component Unique Name
 Plant Loop Overall, !- Actuated Component Type
 On/Off Supervisory; !- Actuated Component Control Type

 EnergyManagementSystem:Actuator,
 PumpFlowOverride, !- Name
 Chiller Plant Cnd Circ Pump, !- Actuated Component Unique Name
 Pump, !- Actuated Component Type
 Pump Mass Flow Rate; !- Actuated Component Control Type

 EnergyManagementSystem:GlobalVariable,
 PumpFlowOverrideReport;

 EnergyManagementSystem:OutputVariable,
 EMS Condenser Flow Override On [On/Off], !- Name
 PumpFlowOverrideReport, !- EMS Variable Name
 Averaged, !- Type of Data in Variable
 SystemTimeStep; !- Update Frequency

 EnergyManagementSystem:ProgramCallingManager,
 Condenser OnOff Management,

EMS Examples Example 11. Performance Curve Result Override

9/27/12 84

 InsideHVACSystemIterationLoop,
 TowerControl;

 EnergyManagementSystem:Program,
 TowerControl,
 IF (OutdoorTemp < 6.0),
 SET Actuator_Loop = 0.0,
 SET PumpFlowOverride = 0.0,
 SET PumpFlowOverrideReport = 1.0,
 ELSE,
 SET Actuator_Loop = Null,
 SET PumpFlowOverride = Null,
 SET PumpFlowOverrideReport = 0.0,
 ENDIF;

 Output:Variable,
 *,
 EMS Condenser Flow Override On,
 Hourly;

Example 11. Performance Curve Result Override

Problem Statement

The output of EnergyPlus performance curves (or tables) can be modified as necessary to
simulate hardware or controls that cannot be accurately realized using a single performance
curve. This example describes a method for modifying the capacity of a DX cooling coil via
the DX coil objects Total Cooling Capacity Function of Temperature performance curve
object.
A particular manufacturer controls the DX cooling coil such that the capacity of the coil
changes at 31°C outdoor air dry-bulb temperature. The following EMS program logic will
calculate alternate inputs for cooling coil capacity and over-write the existing performance
curve results.

EMS Design Discussion

For this example, we will start with the equation for cooling capacity of the DX coil object (ref.
Coil:Cooling:DX:SingleSpeed). From the engineering reference, the equation used to
calculate the cooling capacity is:

The first term (Twb,i) refers to the cooling coil inlet air wet-bulb temperature and the second
(Tc,i) refers to the outdoor condenser inlet air dry-bulb temperature. Using the EMS, a new
total capacity as a function of temperature value will be calculated and used during the
simulation. The Energyplus input objects for the cooling coil capacity curve, the associated
outdoor air mixer object, and the original cooling capacity performance curve are shown here.
 Coil:Cooling:DX:SingleSpeed,
 Zone1PTHPDXCoolCoil, !- Name
 CoolingCoilAvailSched, !- Availability Schedule Name
 8750.0, !- Rated Total Cooling Capacity {W}
 0.75, !- Rated Sensible Heat Ratio
 3.0, !- Rated COP
 0.5, !- Rated Air Flow Rate {m3/s}
 , !- Rated Evaporator Fan Power Per Volume Flow
Rate {W/(m3/s)}
 Zone1PTHPFanOutletNode, !- Air Inlet Node Name
 Zone1PTHPDXCoolCoilOutletNode, !- Air Outlet Node Name

() () () () ()()2 2
, , , , , ,wb i wb i c i c i wb i c iTotCapTempModFac a b T c T d T e T f T T= + + + + +

EMS Examples Example 11. Performance Curve Result Override

9/27/12 85

 HPACCoolCapFT, !- Total Cooling Capacity Function of
Temperature Curve Name
 HPACCoolCapFFF, !- Total Cooling Capacity Function of Flow
Fraction Curve Name
 HPACEIRFT, !- Energy Input Ratio Function of Temperature
Curve Name
 HPACEIRFFF, !- Energy Input Ratio Function of Flow Fraction
Curve Name
 HPACPLFFPLR; !- Part Load Fraction Correlation Curve Name

 OutdoorAir:Mixer,
 Zone1PTHPOAMixer, !- Name
 Zone1PTHPOAMixerOutletNode, !- Mixed Air Node Name
 Zone1PTHPOAInNode, !- Outdoor Air Stream Node Name
 Zone1PTHPExhNode, !- Relief Air Stream Node Name
 Zone1PTHPAirInletNode; !- Return Air Stream Node Name

 Curve:Biquadratic,
 HPACCoolCapFT, !- Name
 0.942587793, !- Coefficient1 Constant
 0.009543347, !- Coefficient2 x
 0.000683770, !- Coefficient3 x**2
 -0.011042676, !- Coefficient4 y
 0.000005249, !- Coefficient5 y**2
 -0.000009720, !- Coefficient6 x*y

Note that the Total Cooling Capacity Function of Temperature Curve Name is
HPACCoolCapFT and the inlet air node for this cooling coil is Zone1PTHPFanOutletNode.
From the mixer object, the outdoor air node name is Zone1PTHPOAInNode. The existing
cooling capacity performance curve name is HPACCoolCapFT. These node or object names
will be used in the EMS program to point to the node or object as required.

EMS Input Objects

The main input objects that implement this example for over-riding a performance curve
result are listed below. Note that the node wet-bulb temperature at the inlet node of the
cooling coil is calculated both using the node wet-bulb temperature and the psychrometric
function to calculate a wet-bulb temperature from dry-bulb temperature and humidity ratio.
The node wet-bulb temperature EMS sensor is left in this example for the sole purpose of
showing how to access this node variable in a direct and indirect manner.
Referring to the cooling capacity equation above, a new equation must be developed to
represent this same performance aspect of the cooling coil. Since, in this example, the
cooling capacity changes at 31°C, one of the coefficients is modified and used in the IF block
to modify the cooling capacity above and below this outdoor air temperature limit. Note also
that the coefficients used in the EMS program are all positive values and the negative sign is
accounted for the CurveInput equation. Also, the value of C2 was changed to a negative
value to represent the change in performance at 31°C. To calculate the new performance
curve results, EMS sensors are placed at the cooling coil air inlet node to capture air dry-bulb
temperature and humidity ratio, and at the outdoor air mixer outdoor air node inlet to capture
outdoor air dry-bulb temperature and pressure. The curve input equation is identical to the
equation shown above except that 1) the equation coefficients are all positive and any
negative coefficients are accounted for in the equation itself, and 2) alternate coefficients
(actually only C2a in this example) are used for the second equation. The results of this
example show a marked difference in the cooling capacity above 31°C.

 EnergyManagementSystem:ProgramCallingManager,
 EMSBasedCurveManager, !- Name
 AfterPredictorBeforeHVACManagers, !- EnergyPlus Model Calling Point

EMS Examples Example 11. Performance Curve Result Override

9/27/12 86

 CurveOverwriteMGR; !- Program Name 1

 EnergyManagementSystem:Program,
 CurveOverwriteMGR,
 SET TTmp = CoilInletDBT,
 SET WTmp = CoilInletW,
 SET PTmp = Pressure,
 SET MyWB = @TwbFnTdbWPb TTmp WTmp PTmp,
 SET IVOne = CoilInletWBT,
 SET IVOne = MyWB,
 SET IVTwo = OAT,
 SET IVThree = IVOne*IVTwo,
 SET C1 = 0.942567793,
 SET C2 = 0.009543347,
 SET C2a = 0.009543347, !- -0.009543347
 SET C3 = 0.00068377,
 SET C4 = 0.011042676, !- -0.011042676
 SET C5 = 0.000005249,
 SET C6 = 0.000009720, !- -0.000009720
 IF OAT < 31.0,
 SET CurveInput = C1 + (C2*IVOne) + (C3*IVOne*IVone) - (C4*IVTwo) +
(C5*IVTwo*IVTwo) - (C6*IVThree),
 ELSE,
 SET CurveInput = C1 - (C2a*IVOne) + (C3*IVOne*IVone) - (C4*IVTwo) +
(C5*IVTwo*IVTwo) - (C6*IVThree),
 ENDIF,
 SET CurveOverwrite = CurveInput;

 EnergyManagementSystem:Actuator,
 CurveOverwrite, !- Name
 HPACCOOLCAPFT, !- Actuated Component Unique Name
 Curve, !- Actuated Component Type
 Curve Result; !- Actuated Component Control Type

 EnergyManagementSystem:Sensor,
 ActualCurve, !- Name
 HPACCOOLCAPFT, !- Output:Variable or Output:Meter Index Key Name
 Performance Curve Output; !- Output:Variable or Output:Meter Name

 EnergyManagementSystem:Sensor,
 CoilInletWBT, !- Name
 Zone1PTHPFanOutletNode, !- Output:Variable or Output:Meter Index Key Name
 System Node Wetbulb Temp; !- Output:Variable or Output:Meter Name

 EnergyManagementSystem:Sensor,
 Pressure, !- Name
 Zone1PTHPOAInNode, !- Output:Variable or Output:Meter Index Key Name
 System Node Pressure ; !- Output:Variable or Output:Meter Name

 EnergyManagementSystem:Sensor,
 CoilInletDBT, !- Name
 Zone1PTHPFanOutletNode, !- Output:Variable or Output:Meter Index Key Name
 System Node Temp; !- Output:Variable or Output:Meter Name

 EnergyManagementSystem:Sensor,
 CoilInletW, !- Name
 Zone1PTHPFanOutletNode, !- Output:Variable or Output:Meter Index Key Name
 System Node Humidity Ratio; !- Output:Variable or Output:Meter Name

 EnergyManagementSystem:Sensor,
 OAT, !- Name
 Zone1PTHPOAInNode, !- Output:Variable or Output:Meter Index Key Name
 System Node Temp; !- Output:Variable or Output:Meter Name

EMS Examples Example 11. Performance Curve Result Override

9/27/12 87

 EnergyManagementSystem:OutputVariable,
 ERLCurveValue, ! Name
 ActualCurve, ! EMS Variable Name
 Averaged, ! Type of Data in Variable
 ZoneTimeStep ; ! Update Frequency

 EnergyManagementSystem:OutputVariable,
 NewCurveValue, ! Name
 CurveInput, ! EMS Variable Name
 Averaged, ! Type of Data in Variable
 ZoneTimeStep ; ! Update Frequency

 Output:EnergyManagementSystem,
 Verbose, !- Actuator Availability Dictionary Reporting
 Verbose, !- Internal Variable Availability Dictionary Reporting
 Verbose; !- EMS Runtime Language Debug Output Level

 Output:Variable,
 *,
 ERLCurveValue,
 Hourly;

 Output:Variable, HPACCOOLCAPFT,Performance Curve Output,Hourly;
 Output:Variable, HPACCOOLCAPFT,Performance Curve Input 1,Hourly;
 Output:Variable, HPACCOOLCAPFT,Performance Curve Input 2,Hourly;
 Output:Variable, Zone1PTHPFanOutletNode, System Node Wetbulb Temp, Hourly;

EMS Examples Example 12. Variable Refrigerant Flow System Override

9/27/12 88

Figure 4. Results of Performance Curve Override

Example 12. Variable Refrigerant Flow System Override

Problem Statement

The variable refrigerant flow heat pump air conditioner has several available thermostat
control options. These operation control schemes may not provide the type of control desired.
How can we use a simple EMS addition to an input file that can override the specified
thermostat control logic and set an alternate mode of operation?

EMS Design Discussion

Depending on the type of thermostat control logic, the Energyplus program will review the
loads in each zone, the number of zones in cooling or heating, the deviation from set point
temperature, etc. to determine the mode of operation for the heat pump condenser. Alternate
control logic may be developed to more accurately reflect the operation of a specific
manufacturers product, or investigate other control techniques. This control logic may be
added to an input file and used as the operating control logic of the heat pump.
This simple example shows how to use EMS actuators to SET the operating mode and cause
a specific terminal unit to operate at a specified part-load ratio (PLR). When setting the
terminal unit PLR, the terminal unit will turn on only if the condenser is allowed to operate
according to the minimum and maximum outdoor temperature limits.

EMS Input Objects

The main input objects that implement this example are the variable refrigerant flow actuators
that control the VRF system and specific terminal unit. Note that the terminal unit PLR can be
controlled without controlling the mode of the VRF condenser, however, the specific terminal
unit will operate in whatever mode the existing operation control scheme chooses. This
example program simply “sets” the operating mode and PLR, other more complex control
algorithms can be developed by the user as needed.

 Output:EnergyManagementSystem,

EMS Examples Example 13. Surface Construction Actuator for Thermochromic Window

9/27/12 89

 Verbose, !- Actuator Availability Dictionary Reporting
 Verbose, !- Internal Variable Availability Dictionary
Reporting
 Verbose; !- EMS Runtime Language Debug Output Level

 EnergyManagementSystem:ProgramCallingManager,
 VRF OnOff Management, !- Name
 InsideHVACSystemIterationLoop, !- EnergyPlus Model Calling Point
 VRFControl; !- Program Name 1

 EnergyManagementSystem:Program,
 VRFControl, !- Name
 SET VRF_Actuator_OnOff = VRF_Status_Heating, !- Program Line 2
 SET VRF_TerminalUnit1_PLR = 0.5;

 EnergyManagementSystem:Actuator,
 VRF_Actuator_OnOff, !- Name
 VRF Heat Pump, !- Actuated Component Unique Name
 Variable Refrigerant Flow Heat Pump, !- Actuated Component Type
 Operating Mode; !- Actuated Component Control Type

 EnergyManagementSystem:Actuator,
 VRF_TerminalUnit1_PLR, !- Name
 TU1, !- Actuated Component Unique Name
 Variable Refrigerant Flow Terminal Unit, !- Actuated Component Type
 Part Load Ratio; !- Actuated Component Control Type

 EnergyManagementSystem:OutputVariable,
 Erl VRF Control Status, !- Name
 VRF_Actuator_OnOff, !- EMS Variable Name
 Averaged, !- Type of Data in Variable
 SystemTimeStep; !- Update Frequency

 Output:Variable,*,Erl VRF Control Status,detailed;
 Output:Variable,*,Variable Refrigerant Flow Heat Pump Operating
Mode,detailed;
 Output:Variable,*,DX Cooling Coil Runtime Fraction,detailed;
 Output:Variable,*,DX Heating Coil Runtime Fraction,detailed;

 EnergyManagementSystem:ProgramCallingManager,
 Init VRF Control Mode Constants, !- Name
 BeginNewEnvironment, !- EnergyPlus Model Calling Point
 InitializeVRFControlModes; !- Program Name 1

 EnergyManagementSystem:Program,
 InitializeVRFControlModes, !- Name
 Set VRF_Status_Off = 0.0, !- Program Line 1
 Set VRF_Status_Cooling = 1.0, !- Program Line 2
 Set VRF_Status_Heating = 2.0; !- Program Line 3

 EnergyManagementSystem:GlobalVariable,
 VRF_Status_Off, !- Erl Variable 1 Name
 VRF_Status_Cooling, !- Erl Variable 2 Name
 VRF_Status_Heating; !- Erl Variable 3 Name

Example 13. Surface Construction Actuator for Thermochromic Window

Problem Statement

There are a variety of novel new technologies for dynamic thermal envelopes that are the
subject of research and development. Can we use EMS to investigate dynamic envelope
technologies?

EMS Examples Example 13. Surface Construction Actuator for Thermochromic Window

9/27/12 90

EMS Design Discussion

As an example, we will show how to use the EMS to replicate a thermochromic window.
EnergyPlus already has a dedicated model for thermochromic windows (see the input object
WindowMaterial:GlazingGroup:Thermochromic) that is demonstrated in the example file
called ThermochromicWindow.idf. For this EMS example we will start with that file, remove
the WindowMaterial:GlazingGroup:Thermochromic and emulate the thermochromic window
using the EMS actuator called “Surface” with the control type “Construction State.”
The first step is to create the individual Construction objects that will represent the individual
states. The original thermochromic example file already includes a series of
WindowMaterial:Glazing input objects that correspond to the properties of the thermochromic
glazing at different temperatures. These glazing layers are then used in a series of
Construction objects that represent the entire glazing system description at each temperature
“state.” Separate EnergyManagementSystem:ConstructionIndexVariable objects are then
added for each Construction to setup Erl variables that point to each construction.
The control algorithm is very simple. The temperature of the glazing is used in a long IF-
ELSEIF-ELSE-ENDIF block to select the appropriate construction to assign the surface. In
this case the native thermochromic model has an important advantage in that the dedicated
model can access the temperature of the middle pane in a triple glazed window whereas the
EMS model can only access the temperature of the outside pane or the inside pane. Here
we use the temperature of the outside face of the surface because it is closer to the
temperature of the middle pane (which can be much higher when in direct sun).

EMS Input Objects

The main input objects that implement this example of EMS-based thermochromic glazing
system are listed below. The surface called “Perimeter_ZN_1_wall_south_Window_1” is the
one being actuated by EMS and we can observe the outcomes of the override by reporting
the output variable called Surface Construction Index. See the example file called
EMSThermochromicWindow.idf.

 Construction,
 TCwindow_25, !- Name
 Clear3PPG, !- Outside Layer
 AIR 3MM, !- Layer 2
 WO18RT25, !- Layer 3
 AIR 8MM, !- Layer 4
 SB60Clear3PPG; !- Layer 5

 EnergyManagementSystem:ConstructionIndexVariable,
 TCwindow_25,
 TCwindow_25;

 Construction,
 TCwindow_27, !- Name
 Clear3PPG, !- Outside Layer
 AIR 3MM, !- Layer 2
 WO18RT27, !- Layer 3
 AIR 8MM, !- Layer 4
 SB60Clear3PPG; !- Layer 5

 EnergyManagementSystem:ConstructionIndexVariable,
 TCwindow_27,
 TCwindow_27;

<<SNIPPED states between 27C and 80C >>

 Construction,
 TCwindow_80, !- Name

EMS Examples Example 13. Surface Construction Actuator for Thermochromic Window

9/27/12 91

 Clear3PPG, !- Outside Layer
 AIR 3MM, !- Layer 2
 WO18RT80, !- Layer 3
 AIR 8MM, !- Layer 4
 SB60Clear3PPG; !- Layer 5

 EnergyManagementSystem:ConstructionIndexVariable,
 TCwindow_80,
 TCwindow_80;

 Construction,
 TCwindow_85, !- Name
 Clear3PPG, !- Outside Layer
 AIR 3MM, !- Layer 2
 WO18RT85, !- Layer 3
 AIR 8MM, !- Layer 4
 SB60Clear3PPG; !- Layer 5

 EnergyManagementSystem:ConstructionIndexVariable,
 TCwindow_85,
 TCwindow_85;

 EnergyManagementSystem:Sensor,
 Win1_Tout,
 Perimeter_ZN_1_wall_south_Window_1,
 Surface Outside Temperature;

 EnergyManagementSystem:Actuator,
 Win1_Construct,
 Perimeter_ZN_1_wall_south_Window_1,
 Surface,
 Construction State;

 EnergyManagementSystem:ProgramCallingManager,
 My thermochromic window emulator,
 BeginTimestepBeforePredictor,
 ZN_1_wall_south_Window_1_Control;

 EnergyManagementSystem:Program,
 ZN_1_wall_south_Window_1_Control,
 IF Win1_Tout <= 26.0 ,
 Set Win1_Construct = TCwindow_25,
 ELSEIF Win1_Tout <= 28.0 ,
 SEt Win1_Construct = TCwindow_27,
 ELSEIF Win1_Tout <= 30.0 ,
 SET Win1_Construct = TCwindow_29,
 ELSEIF Win1_Tout <= 32.0 ,
 SET Win1_Construct = TCwindow_31,
 ELSEIF Win1_Tout <= 34.0 ,
 SET Win1_Construct = TCwindow_33,
 ELSEIF Win1_Tout <= 36.0 ,
 SET Win1_Construct = TCwindow_35,
 ELSEIF Win1_Tout <= 38.0 ,
 SET Win1_Construct = TCwindow_37,
 ELSEIF Win1_Tout <= 40.0 ,
 SET Win1_Construct = TCwindow_39,
 ELSEIF Win1_Tout <= 42.0 ,
 SET Win1_Construct = TCwindow_41,
 ELSEIF Win1_Tout <= 44.0 ,
 SET Win1_Construct = TCwindow_43,
 ELSEIF Win1_Tout <= 47.5 ,
 SET Win1_Construct = TCwindow_45,
 ELSEIF Win1_Tout <= 52.5 ,

EMS Examples Example 13. Surface Construction Actuator for Thermochromic Window

9/27/12 92

 SET Win1_Construct = TCwindow_50,
 ELSEIF Win1_Tout <= 57.5 ,
 SET Win1_Construct = TCwindow_55,
 ELSEIF Win1_Tout <= 62.5 ,
 SET Win1_Construct = TCwindow_60,
 ELSEIF Win1_Tout <= 67.5 ,
 SET Win1_Construct = TCwindow_65,
 ELSEIF Win1_Tout <= 72.5 ,
 SET Win1_Construct = TCwindow_70,
 ELSEIF Win1_Tout <= 77.5 ,
 SET Win1_Construct = TCwindow_75,
 ELSEIF Win1_Tout <= 82.5 ,
 SET Win1_Construct = TCwindow_80,
 ELSE ,
 SET Win1_Construct = TCwindow_85,
 ENDIF;

Output:Variable, Perimeter_ZN_1_wall_south_Window_1, Surface Construction
Index, timestep;

Debugging EMS Programs ERR File

9/27/12 93

Debugging EMS Programs

This section discusses approaches to debugging Erl programs. As you develop your own
programs, you will need to identify and correct coding problems. The task of debugging an Erl
program is challenging. Compared to most programming, with integrated development
environments and sophisticated debugging interfaces, the Erl programmer has only
rudimentary tools available for debugging. If you have some type of developer license and
EnergyPlus source code, you could debug Erl programs inside a full-featured debugging
environment (such as IVF integrated into VS9). But this is only for extremely advanced users
and developers implementing EMS related code inside EnergyPlus. Most users’ EMS should
have little need to deal with compilers and development environments, because enough
information is produced by EnergyPlus when it runs their Erl programs. This section
examines output related to EMS in an effort to help you debug your Erl programs.

ERR File

A key output file to review is the ERR file (eplusout.err), the one with the “.err” file extension.
This is the common error file for all of EnergyPlus, and many EMS-related errors will appear
there. The file might contain critical problems that arose while the Erl programs were being
read in and processed. Although the EDD file will likely be the focus of most debugging,
remember the ERR file. Also, sometimes no EDD file is produced from a run. This occurs
when problems are captured early during input processing and the program fatals out before
an Erl program is run. Depending on the run manager you use to execute EnergyPlus, the
EDD file may be from a previous run, so check the file creation times for ERR and EDD.

An especially important error revealed in the ERR file is truncation from too long input. Each
program line in Erl is limited to 100 characters. (It becomes useful to keep variable names
shorter in Erl because the line length limit can be onerous.) If there are more than 100
characters, the program truncates the line to the first 100. This will often throw a severe error
that halts because the truncated line is not a valid statement. But an unlucky truncation may
form a viable line of code and the program will run. Truncation of any Erl program line is
surely a bad thing, so it is important to check the ERR file.

EDD File

If the Erl programs are processed and start running, the EDD becomes a primary source of
information for debugging. The EDD file is the output file associated only with the EMS. When
a line of Erl code is executed, and full trace is selected, the program will output records that
are useful for debugging.

It is very important to be careful with the EDD file. There are options to control how verbose
the EDD file becomes with modes such as only the errors or a full trace. The full trace option
should be used with care because a full line-by-line trace of EMS program execution for an
annual run can easily create an enormous file that is too large for most computer systems.

Line Trace

You can use the EDD file to examine the execution of every line of code. If you request a
verbose level of debugging output in the Output:EnergyManagementSystem input object, the
EDD file will contain a series of text records that trace the execution of each line of Erl code.
Traces contain the name of the program, the program line number, the text of the line, the
result returned by executing the line (if any), and a timestamp that indicates when it was

Debugging EMS Programs Debugging Strategies

9/27/12 94

executed during the environment period. Note that the EDD file is only produced if you have
EMS/Erl programs in your input file.

An example of a single trace follows. This is one record, or single line of text from one of the
traces in an EDD file.

VAV1MIXEDAIRMANAGERS,Line 1,SET VAV_1_COOLC_SETPOINT =
SEASONAL_RESET_SAT_SCHED - (T_VAV1FANOUT - T_VAV1FANIN),13.0000000000000,
During Warmup, Occurrence info=CHICAGO IL USA TMY2-94846 WMO#=725300, 01/01
18:30 - 18:45

Each block of text is separated by comma, so the trace information could be read into a
spreadsheet and formatted to columns using comma separation.

“VAV1MIXEDAIRMANAGERS” is the name of a user-defined Erl Program.

“Line 1” indicates that this trace is from the first line of the Erl program called
VAV1MIXEDAIRMANAGERS.

The next block of text, “SET VAV_1_COOLC_SETPOINT =
SEASONAL_RESET_SAT_SCHED - (T_VAV1FANOUT - T_VAV1FANIN)” is the Erl
program statement contained at Line 1 in the Erl program called
VAV1MIXEDAIRMANAGERS.

The value “13.0000000000000” is the result of this particular SET statement. The value of
13.0 has been assigned to the variable called VAV_1_COOLC_SETPOINT.

The next block of text “During Warmup” indicates that the line was executed while the
simulation was in a warm up phase. (Warmup happens during the beginning of each
environment period to precondition the model’s transients with the conditions of the first day.)

The next block of text “Occurrence info=CHICAGO IL USA TMY2-94846 WMO#=725300”
indicates the environment period being simulated. This is a weather-file-based RunPeriod for
Chicago using TMY2 data source associated with weather station number 725300.

The last block of text “01/01 18:30 - 18:45” is the date and time of day for the simulation
timestep when the Erl program line was executed.

Debugging Strategies

This section attempts to provide some debugging tips.

There is no debugging environment, so the main way to obtain information is to use verbose
mode and trace each line.

Say, for example, we are trying to debug the following line:

 ELSEIF (Hour >= 5) && (Hour < 19) && (DayOfWeek >=2) && (DayOfWeek <=6) ,

The line trace, shown next, shows only the result of the logical condition, i.e., 0.0 (highlighted)
if overall it is false or 1.0 if overall it is true.

MYCOMPUTEDHEATINGSETPOINTPROG,Line 10,ELSEIF (HOUR >= 5) && (HOUR < 19) && (DAYOFWEEK >=2) && (DAYOFWEEK
<=6),0.0, Occurrence info=CHICAGO IL USA TMY2-94846 WMO#=725300, 09/23 10:20 - 10:30

To debug what is going on with the individual terms in the logical expression, we can add
some otherwise useless statements so line traces contain an echo of the current values of

Debugging EMS Programs Debugging Strategies

9/27/12 95

the HOUR and DAYOFWEEK built-in variables. So if we add the following lines before the
start of the IF block,

 Set locHour = Hour, ! echo out for debug
 Set locDay = DayOfWeek, ! echo out for debug

We will see the values that Hour and DayOfWeek contain in the debug output. The local
variables Erl variables locHour and locDay do not need to be used for anything, but by adding
these Erl statements we can glean debugging insights.

The line of Erl code is switched to all uppercase on input, so the line trace differs from the
input file in that all characters are capitalized. If the input file was developed using a
CamelCase convention, it may be much more difficult to read in the line trace output. Thus,
the underscore character “_” may be a more useful convention for inputting Erl code because
it will be more readable in the debugging traces.

	Introduction
	Background
	Organization

	EnergyPlus Runtime Language
	Statement Keywords
	Rules for IF blocks:
	Rules for WHILE blocks:

	Variables
	Built-In Variables
	Trend Variables

	Expressions
	Built-In Functions
	Built-in Math Functions
	Built-In Simulation Management Functions
	Built-in Trend Variable Functions
	Built-in Psychrometric Functions
	Built-in Curve and Table Functions

	Internal Variables
	Zone Geometry
	Internal Gains
	People Count Design Level
	Lighting Power Design Level
	Plug and Process Power Design Level
	Gas Process Power Design Level
	Process District Heat Design Level
	Process Steam District Heat Design Level
	Other Equipment Design Level
	Simple Zone Baseboard Capacity

	HVAC Systems
	AirTerminal:SingleDuct:Uncontrolled
	Fan Nominal Ratings
	Fan Maximum Mass Flow Rate
	Fan Nominal Pressure Rise
	Fan Nominal Total Efficiency

	Unitary HVAC Nominal Ratings
	Unitary HVAC Design Heating Capacity
	Unitary HVAC Design Cooling Capacity

	Outdoor Air Mixer Nominal Ratings
	Outdoor Air Controller Maximum Mass Flow Rate
	Outdoor Air Controller Minimum Mass Flow Rate

	Pump Nominal Ratings
	Low Temperature Radiant Hydronic
	Constant Flow Low Temp Radiant Design Water Mass Flow Rate
	Hydronic Low Temp Radiant Design Water Mass Flow Rate for Heating
	Hydronic Low Temp Radiant Design Water Mass Flow Rate for Cooling

	On-Site Electricity Production
	Generator Nominal Ratings
	Electrical Storage

	Sizing
	Sizing:Zone
	Sizing:System
	Sizing:Plant

	EMS Sensors
	Variable Types
	Schedules

	EMS Actuators
	HVAC Systems
	System Node Setpoints
	Zone HVAC Control
	Plant Supervisory Control
	Outdoor Air System Node Conditions
	AirLoopHVAC Availability Status
	Ideal Loads Air System
	Fan
	DX Cooling Coils
	Unitary Equipment
	AirTerminal:SingleDuct:Uncontrolled
	Outdoor Air Controller
	Plant Load Profile
	Pump
	Window Air Conditioner
	Low Temperature Radiant Hydronic
	Variable Refrigerant Flow Heat Pump Air Conditioner
	Variable Refrigerant Flow Terminal Unit

	Thermal Envelope
	Window Shading Control
	Slat Angle
	Surface Convection Heat Transfer Coefficient
	Material Surface Properties
	Surface Construction State
	Surface Boundary Conditions

	Air Movement
	Zone Infiltration
	Zone Ventilation
	Zone Mixing
	Zone Cross Mixing
	Airflow Network Openings

	Internal Gains
	People
	Lights
	Electric Equipment
	Gas Equipment
	Hot Water Equipment
	Steam Equipment
	Other Equipment
	Baseboard

	On-Site Electricity Production
	Generator Dispatch
	Electrical Storage

	Refrigeration
	Condenser Operation

	General
	Schedules
	Curves
	Weather Data

	Sizing
	Sizing:Zone
	System Sizing

	EMS Calling Points
	Begin New Environment
	After New Environment Warmup Is Complete
	Begin Timestep Before Predictor
	After Predictor Before HVAC Managers
	After Predictor After HVAC Managers
	Inside HVAC System Iteration Loop
	End of Zone Timestep Before Reporting
	End of Zone Timestep After Reporting
	End of System Timestep Before HVAC Reporting
	End of System Timestep After HVAC Reporting
	End of Zone Sizing
	End of System Sizing
	After Component Model Input has Been Read In
	User Defined Component Model

	User-Defined Component Models
	Common Characteristics
	Zone Forced Air Unit
	Primary Air Connection
	Secondary Air Connection
	Plant Connections
	Water Use
	Ambient Zone

	Air Terminal Unit
	Primary Air Connection
	Secondary Air Connection
	Plant Connections
	Water Use
	Ambient Zone

	Air Coil
	Air Connections
	Plant Connections
	Water Use
	Ambient Zone

	Plant Component
	Plant Connections
	Air Connection
	Water Use
	Ambient Zone

	EMS Examples
	Example 1. Whole-Building Average Zone Air Temperature
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 2. Traditional Setpoint and Availability Managers
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 3. Hygro-thermal Window Opening Control for Airflow Network
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 4. Halt Program Based on Constraint
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 5. Computed Schedule
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 6. Window Shade Control
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 7. Constant Volume Purchased Air System
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 8. System Sizing with Discrete Package Sizes
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 9. Demand Management
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 10. Plant Loop Override Control
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 11. Performance Curve Result Override
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 12. Variable Refrigerant Flow System Override
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Example 13. Surface Construction Actuator for Thermochromic Window
	Problem Statement
	EMS Design Discussion
	EMS Input Objects

	Debugging EMS Programs
	ERR File
	EDD File
	Line Trace
	Debugging Strategies

	Return to Document Main Menu
	Return to Application Guide Main Menu

