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Introduction 

This document provides an in-depth look at the Energy Management System (EMS) feature 
in EnergyPlus and provides a way to develop custom control and modeling routines for 
EnergyPlus models. EMS is an advanced feature of EnergyPlus and is not for beginners. You 
will need to write your own custom computer programs and have a thorough understanding of 
how you want your models to behave. If you are intimidated by the idea of writing computer 
programs to adjust the fine details of how an EnergyPlus model runs, be aware that EMS is 
not for all (or even most) users. However, if you relish the idea of being able to write small 
computer programs that override some annoying behavior, you may find that writing Erl 
programs can solve many problems faced by energy modelers. EMS is a complicated feature  
and this application guide augments the Input/Output Reference by providing an overall 
discussion of how to use EMS.  

EMS provides high-level, supervisory control to override selected aspects of EnergyPlus 
modeling. A small programming language called EnergyPlus Runtime Language (Erl) is used 
to describe the control algorithms. EnergyPlus interprets and executes your Erl program as 
the model is being run. This guide serves as a programming manual for Erl and attempts to 
show you how to customize your EnergyPlus simulations.  

Background  

We used the operations manual for a common commercial brand of EMS to guide the initial 
formulation of Erl. The circa 2000 EMS language from a major manufacturer is a good 
example because it uses a full-featured EMS language and does not rely on a graphical user 
interface. 

Organization 

We first describe Erl, then discuss its rules and features, including syntax for writing 
statements, variables, expressions, and built-in functions. We then discuss sensors, 
actuators, and calling points for the EMS. Then we describe a set of examples applications 
for EMS. The last section provides information about debugging Erl programs.  
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EnergyPlus Runtime Language 

Erl is the simplified programming language used to define the EMS control and modeling 
programs. This section describes the rules and syntax for using Erl to write programs.  

Statement Keywords  

Every programming language has instructions or commands that tell the processor what to 
do. Erl supports a few types of program statements. Each line of an Erl program begins with 
a statement keyword. The syntax for each line depends on the keyword that starts that line. 
Only those listed in Table 1 are allowed.  
 

Table 1. Statement Keywords for Erl 

Keyword Syntax Statement Description 

RUN RUN <program name>, 
Calls another Erl program or subroutine. 
Returns to the calling point when completed. 
Recursive calling is allowed. 

RETURN RETURN, Prematurely exits a subroutine or program 
and returns control to the caller.  

SET SET <variable> = 
<expression>, 

Assigns the right-hand side to the left-hand 
side. If <variable> has not been used before, 
it is dynamically declared (with local scope). 
Note: <variables> should NOT start with 
numerics. 

IF IF <expression>, 

Begins an “IF block.” Conditional decision. If 
<expression> evaluates to anything other 
than zero, the block of statements after the 
IF is executed.  

ELSEIF ELSEIF <expression>, 

Conditional decision that follows a regular IF 
block of instructions. If <expression>  
evaluates to anything other than zero, the 
block of instructions after the ELSEIF is 
executed. 

ELSE ELSE, 

Conditional decision. Associated with an IF 
statement, the block of statements after the 
ELSE is executed if <expression> evaluates 
to zero for preceding IF and ELSEIF 
statements.  

ENDIF ENDIF, Terminates IF block (required). 

WHILE WHILE <expression>, 

Begins a “WHILE block.”  Conditional 
decision.  If <expression> evaluates to 
anything other than zero, the block of 
statements after the WHILE is repeatedly 
executed.  

ENDWHILE ENDWHILE, Terminates WHILE block (required). 
 

Rules for IF blocks:   

 IF blocks can be nested, but only up to five deep.  
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 ELSE is optional. If omitted, the IF block is terminated by ENDIF. 
IF-ELSEIF-ELSE-ENDIF blocks are allowed. If there are many ELSEIF statements, the first in 
the list that evaluates to true (1.0) is applied and the execution jumps to the ENDIF for that IF 
block. If no IF or ELSEIF is true, the ELSE condition (if any) is applied. A single IF block 
currently has a limit of 199 ELSEIF statements plus one ELSE statement.  

Rules for WHILE blocks: 

 WHILE blocks cannot be nested. 
 A WHILE block must be terminated by an ENDWHILE 
 The block is repeated until the expression following the WHILE statement evaluates 

to 0.0 (false). 
 Once the WHILE loop is entered, there is a maximum limit on the number of times 

the loop can be repeated. The limit is set at one million repetitions to protect against 
the possibility of an Erl program entering an infinite loop if the WHILE loop’s 
expression is malformed so as to never evaluate to 0.0 (false). 

Erl programs are entered into the input data file (IDF) using the input objects called 
EnergyManagementSystem:Program and EnergyManagementSystem:Subroutine. These 
objects use individual fields to store the statements for an Erl program. As with most 
EnergyPlus objects, each field is separated by a comma and typically given a separate line of 
text for readability. In this case, each field can be considered a separate line of Erl program 
code. Every input field (line of code) must conform to the following rules:   

• Every input field contains only one statement. 

• Every field begins with a statement keyword that identifies what that particular line of 
code is doing.  

• The syntax for each statement depends on the keyword. 

• All field content (keywords, variable names, etc.) is case insensitive. 

• A comma (or semicolon if it is the last field) marks the end of every statement. 

• The maximum length for a field is 100 characters. If you enter a longer field, it will be 
truncated to the first 100 characters. This can have subtle effects if the remaining 
portion forms a viable expression.  

• The “!” character is for comments. 

REMEMBER, every line needs to end in a comma or, if it is the last in the program, a 
semicolon.  

Variables 

Variables are important to any programming language. All Erl variables, except trend 
variables, are treated the same way in Erl and can be used interchangeably with any 
instruction.  

The rules for selecting names of EMS variables are:   

• No spaces are allowed in user-defined variable names. 

• Underscore (“_”) is the only special character allowed in variable names. 

• Variable names are not case sensitive. 

• Names of variables with global scope must be unique. 

• Variables cannot be declared with the same name as a built-in variable. 
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• Variables can be alpha numeric strings but should NOT start with a numeric. 

The rules for using EMS variables are:  

• All numeric variables are treated as floating point numbers. You use the underlying 
Fortran language features to handle these as double precision real numbers.  

• You can use the SET statement to reassign sensor variables and built-in variables. 

• Actuator variables use SET to perform control actions. 

EMS variables can have either local or global scope. Global scope means that the variables 
can be used across Erl programs and always refer to the same instance of a particular 
variable. Global variables must have unique names. Local scope means that variables can be 
used only within a given Erl program.  
Erl programs have eight types of variables:   

• Sensor. Each EnergyManagementSystem:Sensor input object declares a user-
defined variable and maps it to a variable elsewhere in EnergyPlus (via output 
variables). Variables so declared have global scope and are used to get time-varying 
input data from elsewhere in the EnergyPlus model.  

• Actuator. Each EnergyManagementSystem:Actuator input object declares a user-
defined Erl variable and maps it to a variable elsewhere in EnergyPlus. Variables so 
declared have global scope and are used to set control results elsewhere in the 
EnergyPlus model.  

• Local. Local variables do not need to be explicitly declared. These undeclared 
variables will be automatically registered as EMS variables with local scope. This 
allows you to create new variables “on the fly.”  Local variables can be used for 
temporary storage of intermediate results.  

• Global. EnergyManagementSystem:GlobalVariable input objects are used to declare 
variables with a user-defined name and global scope. Global variables can be used 
to store intermediate results that span across Erl programs. Because the Erl compiler 
does not support functions or argument passing, global variables have an important 
role in using subroutines. These variables are global only within Erl and not with 
respect to code elsewhere in EnergyPlus. 

• Built-in. The EMS system automatically declares a set of built-in variables with 
predefined names. These variables have global scope. The built-in variables are 
always created and cannot be eliminated.  

• Internal. Each EnergyManagementSystem:InternalVariable input object declares a 
user-defined Erl variable and maps it to a variable elsewhere in EnergyPlus. 
Variables so declared have global scope and are used to get static input data from 
elsewhere in EnergyPlus.  

• Trend. Each EnergyManagementSystem:TrendVariable input object declares a user-
defined Erl trend variable and maps it to a global Erl variable for logging. Trend 
variables are used to store the history of Erl variables. Trend variables differ from 
other Erl variables in that they can be put to use only through the built-in trend 
functions (see Table 6).  

• Index. Each EnergyManagementSystem:CurveOrTableIndexVariable and/or 
EnergyManagementSystem:ConstructionIndexVariable declares a user defined Erl 
variable and maps it to a specific item in the IDF of indicated type. 

Built-in variables, internal variables, and sensor variables are primarily used to get 
information about the state of the simulation. However, because all variables are treated 
alike, built-in variables and sensor variables can also be overwritten by the SET instruction. 
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(This applies within the EMS only; the variables in the rest of EnergyPlus program will not be 
overwritten.)  This allows you to reassign constants such as “on” and “off” as well as the 
values of the other built-in variables and sensor variables. There is really no problem with 
this, as long as you know what you are doing. One possible application is to reset a sensor 
variable that references the outdoor drybulb temperature so it contains the temperature in 
degrees Fahrenheit instead of Celsius. Regardless of reassignment, sensor variables and the 
dynamic built-in variables (e.g., date and time) will be cleared and updated with the latest 
values from EnergyPlus at the next timestep. Resetting a sensor variable does not have a 
retroactive effect on the report variable to which it is mapped.  

The actuator variable is the counterpart of the sensor variable. Sensor variables are used to 
get the state of building systems; actuator variables are used to set the state of building 
systems. When used with actuator variables, the SET instruction performs control actions on 
the object to which it maps.  

Built-In Variables 

A set of built-in variables provides date, time, and weather information that is not available via 
standard report variables, as well as several handy constant variables such as “true,” “false,” 
“on,” and “off.” Several variables provide access to the time and date information during the 
course of a simulation.  The CurrentTime, Hour and Minute variables represent the point in 
time at end of the timestep currently being simulated. EnergyPlus primarily operates in 
standard time and these clock values are not adjusted for daylight savings time.  The built-in 
variable DaylightSavings time is available for use with the daylight savings time adjustment 
feature (see RunPeriodControl:DaylightSavingTime). The duration of simulation timesteps 
are available in the variables ZoneTimeStep and SystemTimeStep. 
Table 2 lists the built-in variables that are always available for use in Erl programs.  

Table 2. Built-In Unique Variables for Erl 

Variable Name Value 
Year 1900–2100 
Month 1–12 
DayOfMonth 1–31 
DayOfWeek 1–7 (1 = Sun, 2 = Mon, …) 
DayOfYear 1–365 
Holiday 0 if not. 1.0, 2.0, etc., for each type of holiday in model 
DaylightSavings 0 or 1, 0 if not daylight savings time, 1 if daylight savings time  
CurrentTime 0.0-24.0, (fractional hours) 
Hour 0–23 (whole hours only) 
Minute 1.0–60.0 (fractional minutes) 
True 1.0 
False 0.0 
On 1.0 
Off 0.0 
PI 3.14159265358979 
SunIsUp 0 (= no) or 1 (= yes) 
IsRaining 0 (= no) or 1 (= yes) 
ZoneTimeStep Durating of the zone timestep in hours 
SystemTimeStep Current duration of the system timestep in hours 
CurrentEnvironment Integer index for the current environment period (sizing 
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periods and run periods accumulate throughout the run) 
Null Special structure that stops an actuator from overriding control 

Trend Variables  

Trend variables are used to log data over time. They hold the history of Erl variables from 
previous zone timesteps. You create trend variables with an 
EnergyManagementSystem:TrendVariable input object,  each of which declares a user-
defined Erl trend variable and maps it to a global Erl variable for logging.  

Trend variables are also used to store the history of Erl variables. The trend input includes 
the number of timesteps that are to be logged. The logging of data is first-in-first-out, meaning 
that the oldest data are pushed out the back of the log to make room for the most recent 
data. The zone timestep is used as the (constant) increment of time between different 
elements in the log and this value, in fractional hours, is available in the ZoneTimeStep built-
in variable.  

Trend variables differ from other Erl variables in that they can be used only through the built-
in trend functions (see Table 6). Trend functions provide a number of ways to analyze trend 
data and extract data from the log. There are functions to obtain the maximum, minimum, 
average, and sum of logged data. There is a function to obtain the rate of change in the data. 
All the trend functions include an argument for a log index. This index tells the function how 
far back in time to go when evaluating.  

Expressions 

An expression is a sequence of variables and/or constants linked together by operators. An 
expression is always evaluated to a single value.  

The rules for expressions are:  

• An expression is a sequence of variables and/or constants linked by operators. 

• Expressions always evaluate to a single value. 

• Comparison operators evaluate to 1.0 for “true” or 0.0 for “false.” 

• Compound expressions are allowed and can be organized with parentheses.  

The operators shown in Table 3 are available for use in Erl programs.  

Table 3. Operators for Erl 

Operator 
Symbol 

Description 
Evaluation 

Order 
Example 

( ) Parentheses left-to-right SET z = 23/(3 + 2) 
+ Addition right-to-left SET a = 4 + 5 
- Subtraction right-to-left SET b = a - 3 
* Multiplication right-to-left SET c = a * b 
/ Division left-to-right SET d = b/a 
^ Raise to a power left-to-right SET e = c ^ 0.5 

== Equality comparison left-to-right IF a == b 
<> Inequality comparison left-to-right IF c <> d 

> Greater than 
comparison left-to-right IF a > e 
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>= Greater than or equal to 
comparison left-to-right IF a >= 6 

< Less than comparison left-to-right IF b < 2 

<= Less than or equal to 
comparison left-to-right IF b <= f 

&& Logical AND right-to-left IF c && d 
|| Logical OR right-to-left IF c || d 

 
Because expressions can be evaluated to a single value, they can be used in SET and IF 
statements. That means both of the following instructions are allowed:  

SET a = c < d 
IF a - 1 

In the case of the SET example, the value of “a” is set to 1 if “c” is less than “d”; otherwise, it 
is set to 0. For the IF example, the IF block of instructions are executed if a – 1 is greater 
than zero.  

Compound expressions allow multiple operators to be sequenced or nested. For example: 

a + b * 7 / 4.5 
(a * 3 + 4) ^ 2 
(a > b) && (c < d) 
For complicated expressions, it helps to make heavy use of parentheses in your equations.  
By using parentheses with proper algebraic evaluation in mind to group terms, you can help 
the Erl parser.  The language processor is simplistic compared to a full-blown programming 
language and sometimes has problems applying the rules of algebra.  It is safer to err on the 
side of extra parentheses and to inspect the results of complex expressions in the EDD 
output. 

Built-In Functions 

Several useful, built-in functions are available for use in Erl programs. You cannot configure 
these; they are internal to the language processor inside EnergyPlus. They provide access to 
a subset of general service routines that are useful inside the main EnergyPlus program or 
are intrinsic functions available in the underlying Fortran language. The “@” character is used 
to signal to the language processor that the following character string defines a built-in 
function that is used to assign a result to an Erl variable. The characters appended to the “@” 
operator must be one of the predefined names listed in Table 4, Table 5, Table 6, or Table 7. 
The syntax of the function call will vary depending on the arguments required by the function, 
but the general structure is: 
SET <variable> = @<function name>  <argument1>  <argument2>   …   <argumentN> 
Where “argument” can be either an Erl variable or a numeric constant.  

For example, the following two statements can be used to set the value of an Erl variable 
called mySupplyRH to have percent relative humidity.  

SET mySupplyRH = @RhFnTdbWPb mySupplyDryblub mySupplyHumRat mySupplyPress 

SET mySupplyRH = mySupplyRH * 100 
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Built-in Math Functions 

Table 4 lists the built-in functions for common mathematical functions. The numerical model 
for these functions is provided by the underlying Fortran language and the compiler.  

Table 4. Built-in Math Functions for Erl 

Function Name Description 
Number of 
Arguments 

@Round Decreases precision of real number argument to 
nearest whole number, remains a real number. 1 

@Mod Returns remainder after dividing the first argument 
by the second. 2 

@Sin Sine, returns sine of angle given in radians. 1 
@Cos Cosine, returns cosine of angle given in radians. 1 

@ArcSin Arcsine, returns angle in radians from sine of 
angle.  1 

@ArcCos ArcCosine, returns angle in radians from cosine of 
angle. 1 

@DegToRad Degrees to radians, returns radians from degrees.  1 
@RadToDeg Radians to degrees, returns degrees from radians. 1 

@Exp Exponential, xe , returns result.  1 

@Ln Natural log, log ( )e x , returns result. 1 

@Max Maximum, returns largest value of two arguments. 2 
@Min Minimum, returns smallest value of two arguments. 2 

@Abs Absolute value, returns positive magnitude of 
argument. 1 

@RandomUniform 

Pseudo-Random Number Generator, returns 
random number with uniform probability distribution 
across the range of values passed as the 
arguments, inclusive. Argument 1 is the lower limit. 
Argument 2 is the upper limit. 

2 

@RandomNormal 

Pseudo-Random Number Generator, returns 
random number with normal (Gaussian) probability 
distribution as a function of the mean, standard 
deviation, and limits. Argument 1 is the mean. 
Argument 2 is the standard deviation. Argument 3 
is the lower limit. Argument 4 is the upper limit. 

4 

@SeedRandom 

Random Seed, controls the seed used in the 
random number generator for calls to 
@RandomUniform and @RandomNormal.  Use is 
optional and provided for repeatable series of 
random numbers. The argument is rounded to the 
nearest whole number and then used to set the 
size and values of the seed for the number 
generator.   

1 
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Built-In Simulation Management Functions 

Table 5. Built-in EnergyPlus Simulation Management Functions for Erl 

Function Name Description 
Number of 
Arguments 

@FatalHaltEp 
Throws fatal error with time of occurrence and stops 
execution of current model. Argument passes a 
number that can be used as an error code. 

1 

@SevereWarnEp 
Throws severe error with time of occurrence and 
continues execution. Argument passes a number that 
can be used as an error code. 

1 

@WarnEp 
Throws warning error and continues execution. 
Argument passes a number that can be used as an 
error code. 

1 

Built-in Trend Variable Functions 

For control algorithms, you often need to be able put a sensor reading into some historical 
context. The trend variables are provided in Erl as a way to log the time history of data to use 
in control decisions. To use the trend variables in Erl programs, their values must be 
extracted and placed into normal Erl variables. Setting up an Erl variable as a trend variable 
requires an EnergyManagementSystem:TrendVariable input object. The access functions 
listed in Table 6 are used to obtain data from a trend variable during the execution of an Erl 
program. These functions act on trend variables and return values into the user’s Erl 
variables for subsequent use in calculations. Each trend function takes the name of the trend 
variable and an index that identifies how far back in time the function should be applied. 
Trend variable names are also Erl variables but with special pointers to another data 
structure with the time series data storage. The trend logs have a first-in, first-out storage 
array where only the most recent data are retained. Each element in the history corresponds 
to the result for that value over a zone timestep. The time difference between trend log items 
is the zone timestep in hours, so that the slope returned by @TrendDirection is in per-hour 
units. 

Table 6. Built-in Functions for Trend Variables in Erl 

Function Name Description 
Number of 
Arguments 

@TrendValue 

Returns history value for a particular number of timesteps into 
the past. Dereferences data stored in trend into another Erl 
variable. Takes trend variable name and the specific timestep 
into the past to return. 

2 

@TrendAverage 
Returns historical average (mean) for values in trend variable. 
Takes trend variable name and number of steps into the past 
to analyze 

2 

@TrendMax 
Returns historical maximum for values in trend variable. Takes 
trend variable name and number of steps into the past to 
analyze. 

2 

@TrendMin 
Returns historical minimum for values in trend variable within 
the index. Takes trend variable name and number of steps into 
the past to analyze. 

2 

@TrendDirection Returns slope of a linear least squares fit of trend data within 
the index. Positive if trend is increasing, negative if decreasing. 2 
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Takes trend variable name and number of steps into the past 
to analyze. 

@TrendSum Returns sum of elements stored in trend. Takes trend variable 
name and number of steps into the past to analyze.  2 

The trend functions all take as their second argument an array index. This number should be 
considered an integer for locating an array position. (It will be rounded down to the nearest 
integer using Fortran’s FLOOR intrinsic.)  This index argument tells the trend functions how 
far back in time they should reach into the history log when they evaluate the function call. 
This enables you to compare long- and short-range trends. 

Built-in Psychrometric Functions 

Building modeling often involves calculations related to moist air. A comprehensive set of 
built-in functions is available for psychrometric calculations. Table 7 lists the functions 
available for use in Erl programs that are related to moist air properties and some physical 
properties related to water. More discussion of the psychrometric functions is provided in the 
section “Pyschrometric services” in the Module Developer Guide.  

Table 7. Built-in Psychrometric Functions for Erl 

Function Name Arguments Description Units 

@RhoAirFnPbTdbW 

Result Density of moist air kg/m3 
Input 1 Barometric pressure Pa 
Input 2 Drybulb temperature ºC 
Input 3 Humidity ratio kg H2O/kg dry air 

@CpAirFnWTdb 
Result Heat capacity of moist air J/kg-°C 
Input 1 Humidity ratio kg H2O/kg dry air 
Input 2 Drybulb temperature ºC 

@HfgAirFnWTdb 

Result Heat of vaporization for 
vapor 

J/kg 

Input 1 Humidity ratio kg H2O/kg dry air 
Input 2 Drybulb temperature ºC 

@HgAirFnWTdb 
Result Enthalpy of the gas  
Input 1 Humidity ratio kg H2O/kg dry air 
Input 2 Drybulb temperature ºC 

@TdpFnTdbTwbPb 

Result Dew-point temperature ºC 
Input 1 Drybulb temperature ºC 
Input 2 Wetbulb temperature ºC 
Input 3 Barometric pressure Pa 

@TdpFnWPb 
Result Dew-point temperature ºC 
Input 1 Humidity ratio kg H2O/kg dry air 
Input 2 Barometric pressure Pa 

@HFnTdbW 
Result Enthalpy of moist air J/kg 
Input 1 Drybulb temperature ºC 
Input 2 Humidity ratio kg H2O/kg dry air 

@HFnTdbRhPb 
Result Enthalpy of moist air J/kg 
Input 1 Drybulb temperature ºC 
Input 2 Relative humidity  Fraction (0.0..1) 
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Function Name Arguments Description Units 
Input 3 Barometric pressure Pa 

@TdbFnHW 
Result Drybulb temperature ºC 
Input 1 Enthalpy of moist air J/kg 
Input 2 Humidity ratio kg H2O/kg dry air 

@RhovFnTdbRh 
Result Vapor density in air kg/m3 
Input 1 Drybulb temperature ºC 
Input 2 Humidity ratio kg H2O/kg dry air 

@RhovFnTdbWPb 

Result Vapor density in air kg/m3 
Input 1 Drybulb temperature ºC 
Input 2 Humidity ratio kg H2O/kg dry air 
Input 3 Barometric pressure Pa 

@RhFnTdbRhov 
Result Relative humidity  Fraction (0.0..1) 
Input 1 Drybulb temperature ºC 
Input 2 Vapor density in air kg/m3 

@RhFnTdbWPb 

Result Relative humidity  Fraction [0.0..1.0] 
Input 1 Drybulb temperature ºC 
Input 2 Humidity ratio kg H2O/kg dry air 
Input 3 Barometric pressure Pa 

@TwbFnTdbWPb 

Result Wetbulb temperature ºC 
Input 1 Drybulb temperature ºC 
Input 2 Humidity ratio kg H2O/kg dry air 
Input 3 Barometric pressure Pa 

@VFnTdbWPb 

Result Specific volume  m3/kg 
Input 1 Drybulb temperature ºC 
Input 2 Humidity ratio kg H2O/kg dry air 
Input 3 Barometric pressure Pa 

@WFnTdpPb 
Result Humidity ratio kg H2O/kg dry air 
Input 1 Dew-point temperature ºC 
Input 2 Barometric pressure Pa 

@WFnTdbH 
Result Humidity ratio kg H2O/kg dry air 
Input 1 Drybulb temperature ºC 
Input 2 Enthalpy of moist air J/kg 

@WFnTdbTwbPb 

Result Humidity ratio kg H2O/kg dry air 
Input 1 Drybulb temperature ºC 
Input 2 Wetbulb temperature ºC 
Input 3 Barometric pressure Pa 

@WFnTdbRhPb 

Result Humidity ratio kg H2O/kg dry air 
Input 1 Drybulb temperature ºC 
Input 2 Relative humidity  Fraction [0.0..1.0] 
Input 3 Barometric pressure Pa 

@PsatFnTemp Result Saturation pressure Pa 
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Function Name Arguments Description Units 
Input 1 Drybulb temperature ºC 

@TsatFnHPb 
Result Saturation temperature ºC 
Input 1 Enthalpy of moist air J/kg 
Input 2 Barometric pressure Pa 

@CpCW 
Result Heat capacity of water J/kg-K 
Input 1 Temperature ºC 

@CpHW 
Result Heat capacity of water J/kg-K 
Input 1 Temperature ºC 

@RhoH2O 
Result Density of water kg/m3 
Input 1 Temperature ºC 

 

Built-in Curve and Table Functions 

EnergyPlus has a number of different generic curve and table input objects that are used to 
describe the performance characteristics for various component models.  Table 8 describes a 
built-in function called @CurveValue that is available for reusing those curve and table input 
objects in your Erl programs.  Although the Erl language could be used to replicate the 
functionality, reusing those input objects can have advantages because the input may have 
already been developed for use in traditional component models or the limiting and 
interpolation methods are helpful.  The @CurveValue function expects six arguments, 
although usually only a subset of them will be used depending on the number of independent 
variables involved with the curve or table.  Because Erl does not support passing optional 
arguments, dummy variables do need to be included in the function call for all unused 
independent variables.  For example, the Curve:Biquadratric object has only x and y 
independent variables, so input arguments 4, 5, and 6 will not be used when @CurveValue is 
evaluated:   
 Set MyCurveResult = @CurveValue myCurveIndex X1 Y1 dummy dummy dummy; 
The first input argument is always an Erl variable that has been declared using an 
EnergyManagementSystem:CurveOrTableIndexVariable input object.  This variable identifies 
the location of a specific curve or table in the program’s internal data structures.  It is 
important that you do not inadvertently reassign the value held in this variable because it is 
only filled once at the beginning of the simulation. 
 

Table 8. Built-in Function for Accessing Curves and Tables 

Function Name Arguments Description Notes 

@CurveValue 

Result 
Result from evaluating the 
curve or table as a function of 
the input arguments 

 

Input 1 
Index variable that “points” to a 
specific curve or table object 
defined elsewhere in the IDF.   

This variable needs to be 
declared and filled using an 
EnergyManagementSystem:
CurveOrTableIndexVariable 
object. 

Input 2 First independent variable Typically the “X” input value, 
always used 

Input 3 Second independent variable Typically the “Y” value, only 
used if curve/table has two 
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or more independent 
variables 

Input 4 Third independent variable 

Typically the “Z” value, only 
used if curve/table has three 
or more independent 
variables. 

Input 5 Fourth independent variable Only used if table has four or 
more independent variables 

Input 6 Fifth independent variable Only used if table has five 
independent variables 
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Internal Variables  

Internal variables form a category of built-in data accessible for EMS. They are internal in that 
they access information about the input file from inside EnergyPlus. You should already have 
access to the information contained in these because they depend on other content in the 
IDF. However, it would be inconvenient to always have to coordinate changes between Erl 
programs and the rest of the IDF. Internal variables simplify the process of keeping an Erl 
program in sync with other changes to the model. These differ from the built-in variables in 
that they may or may not be created in every simulation and have user-defined names that 
distinguish among different instances of the same type of data. The internal variables differ 
from sensors in that they are usually static values that do not change over time. The 
constants might vary from run to run but never within a single run period. Internal variables 
are read only.  

Internal variables are automatically made available whenever an input file includes basic 
EMS input objects and the model they are associated with is included in the input file. To use 
an internal variable in an Erl program, you must declare it with an 
EnergyManagementSystem:InternalVariable input object. This object assigns a specified Erl 
variable name to contain the value in an internal EnergyPlus data structure. The EDD file lists 
the specific internal variable types, their unique identifying names, and the units. The rest of 
this section provides information about specific internal variables.  

Zone Geometry 

The internal variables called “Zone Air Volume” and “Zone Floor Area” provide basic 
geometric information about each zone. EnergyPlus calculates these from the geometry in 
the IDF, or you may input the zone air volume in the zone input object. These internal 
variables in Erl programming should be useful during a parametric study where the shape of 
the building is being varied, as for a massing study. For example, you could use the zone 
floor area to normalize Erl calculations with a per-unit area. Or you could use the zone air 
volume to convert between air flows in m3/s to air changes per hour (ACH). 

The internal variables called “Zone Multiplier” and “Zone List Multiplier” indicate the 
multipliers assigned to zones.  These can be useful for customizing sizing calculations.  

Internal Gains 

A number of internal variables describe design levels for the various types of internal gains.  

People Count Design Level 

The internal variable “People Count Design Level” provides information about the maximum 
number of people associated with each people input object. The units are number of people. 
This is the value entered in, or resulting from intermediate calculations using, the inputs in the 
People object. This variable is useful for scaling the values assigned to the “Number of 
People” control in the “People” EMS actuator. 

Lighting Power Design Level 

The internal variable “Lighting Power Design Level” provides information about the maximum 
lighting electrical power level associated with each Lights input object. The units are Watts. 
This is the value entered in, or resulting from intermediate calculations using, the inputs in the 
lights object. This variable is useful for scaling the values assigned to the “Electric Power 
Level control in the “Lights” EMS actuator.  



Internal Variables HVAC Systems 
 

9/27/12 15  
 

Plug and Process Power Design Level 

The internal variable “Plug and Process Power Design Level” provides information about the 
maximum electrical equipment power level associated with each ElectricEquipment input 
object. The units are Watts. This is the value entered in, or resulting from intermediate 
calculations using, the inputs in the ElectricEquipment object. This variable is useful for 
scaling the values assigned to the “Electric Power Level” control in the “ElectricEquipment” 
EMS actuator. 

Gas Process Power Design Level 

The internal variable “Gas Process Power Design Level” provides information about the 
maximum gas equipment power level associated with each GasEquipment input object. The 
units are Watts. This is the value entered in, or resulting from intermediate calculations using, 
the inputs in the GasEquipment object. This variable is useful for scaling the values assigned 
to the “Gas Power Level” control in the “GasEquipment” EMS actuator. 

Process District Heat Design Level 

The internal variable “Process District Heat Design Level” provides information about the 
maximum district heating power level associated with each HotWaterEquipment input object. 
The units are Watts. This is the value entered in, or resulting from intermediate calculations 
using, the inputs in the HotWaterEquipment object. This variable is useful for scaling the 
values assigned to the “District Heating Power Level” control in the “HotWaterEquipment” 
EMS actuator. 

Process Steam District Heat Design Level 

The internal variable “Process Steam District Heat Design Level” provides information about 
the maximum district heating power level associated with each SteamEquipment input object. 
The units are Watts. This is the value entered in, or resulting from intermediate calculations 
using, the inputs in the SteamEquipment object. This variable is useful for scaling the values 
assigned to the “District Heating Power Level” control in the “SteamEquipment” EMS 
actuator. 

Other Equipment Design Level 

The internal variable “Other Equipment Design Level” provides information about the 
maximum power level associated with each OtherEquipment input object. The units are 
Watts. This is the value entered in, or resulting from intermediate calculations using, the 
inputs in the OtherEquipment object. This variable is useful for scaling the values assigned to 
the “Power Level” control in the “OtherEquipment” EMS actuator. 

Simple Zone Baseboard Capacity 

The internal variables called “Simple Zone Baseboard Capacity At Low Temperature” and 
“Simple Zone Baseboard Capacity At High Temperature” provide information about the power 
levels associated with each ZoneBaseboard:OutdoorTemperatureControlled object. These 
value are inputs to that object. The variables are useful for scaling the values assigned to the 
“Power Level” control in the “ZoneBaseboard:OutdoorTemperatureControlled” EMS actuator.  

HVAC Systems 

AirTerminal:SingleDuct:Uncontrolled 

An internal variable called “AirTerminal:SingleDuct:Uncontrolled Maximum Mass Flow Rate” 
provides information about the design flow rate for direct air terminals. The units are kg/s. 
This is the mass flow rate (for dry air at standard conditions) at the volume flow rate entered 
in the field Maximum Air Flow Rate (m3/s) in the AirTerminal:SingleDuct:Uncontrolled input 
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object. This internal variable is useful for scaling the flow rates assigned to the “Mass Flow 
Rate” control in the “AirTerminal:SingleDuct:Uncontrolled” EMS actuator. 

Fan Nominal Ratings  

Fan Maximum Mass Flow Rate 

The input variable “Fan Maximum Mass Flow Rate” provides information about the maximum 
flow rate for a fan. The units are kg/s. This is the mass flow rate (for dry air at standard 
conditions) associated with the volume flow rate entered into the Maximum Air Flow Rate 
(m3/s) in the various fan input objects. This internal variable is useful for scaling the flow rates 
assigned to the “Fan Air Mass Flow Rate” control in the “Fan” EMS actuator. 

Fan Nominal Pressure Rise 

The input variable “Fan Nominal Pressure Rise” provides information about the static 
pressure rise experienced by a fan. The units are Pascals. This is the value entered into the 
field called Pressure Rise in the various fan input objects. This internal variable is useful for 
scaling the pressures assigned to the “Fan Pressure Rise” control in the “Fan” EMS actuator. 

Fan Nominal Total Efficiency 

The input variable “Fan Nominal Total Efficiency” provides information about the nominal 
efficiency of each fan. The value is dimensionless and expressed as a fraction. This is the 
value entered into the field called Fan Efficiency in the various fan input objects. This internal 
variable is useful for scaling the value assigned to “Fan Total Efficiency” control in the “Fan” 
EMS actuator. 

Unitary HVAC Nominal Ratings 

Unitary HVAC Design Heating Capacity 

The internal variable called “Unitary HVAC Design Heating Capacity” provides information 
about the nominal heating capacity of unitary or furnace HVAC equipment. The units are 
Watts. The source of these data will vary depending on the type of heating coil. This internal 
variable is useful for scaling the value assigned to “Sensible Load Request” control in the 
“Unitary HVAC” EMS actuator.  

Unitary HVAC Design Cooling Capacity 

The internal variable called “Unitary HVAC Design Cooling Capacity” provides information 
about the nominal cooling capacity of unitary or furnace HVAC equipment. The units are 
Watts. The source of these data will vary depending on the type of cooling coil. This internal 
variable is useful for scaling the value assigned to “Sensible Load Request” control in the 
“Unitary HVAC” EMS actuator. 

Outdoor Air Mixer Nominal Ratings 

Outdoor Air Controller Maximum Mass Flow Rate 

The internal variable called “Outdoor Air Controller Maximum Mass Flow Rate” provides 
information about the maximum outdoor air rate for each outdoor air system. The units are 
kg/s. The sources of these data are inputs in the Controller:OutdoorAir input object. This 
internal variable is useful for scaling the value assigned to the “Air Mass Flow Rate” control in 
the “Outdoor Air Controller” EMS actuator.  

Outdoor Air Controller Minimum Mass Flow Rate 

The internal variable called “Outdoor Air Controller Minimum Mass Flow Rate” provides 
information about the minimum outdoor air rate for each outdoor air system. The units are 
kg/s. The sources of these data are inputs in the Controller:OutdoorAir input object. This 
internal variable is useful for scaling the value assigned to the “Air Mass Flow Rate” control in 
the “Outdoor Air Controller” EMS actuator.  
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Pump Nominal Ratings 

The internal variable called “Pump Maximum Mass Flow Rate” provides information about the 
size of the pump. The units are kg/s. This is the mass flow rate associated with the volume 
flow rate entered into the Rated Flow Rate (m3/s) in the various pump input objects. This 
internal variable is useful for scaling the flow rates assigned to the “Pump Mass Flow Rate” 
control in the “Pump” EMS actuator. 

Low Temperature Radiant Hydronic 

Constant Flow Low Temp Radiant Design Water Mass Flow Rate 

The internal variable called “Constant Flow Low Temp Radiant Design Water Mass Flow 
Rate” provides information about the design water flow rate for radiant systems defined using 
a ZoneHVAC:LowTemperatureRadiant:ConstantFlow input object. The units are m3/s. This 
internal variable is useful for scaling the flow rates assigned to the “Water Mass Flow Rate” 
control in the “Constant Flow Low Temp Radiant” EMS actuator.  

Hydronic Low Temp Radiant Design Water Mass Flow Rate for Heating 

The internal variable called “Hydronic Low Temp Radiant Design Water Mass Flow Rate for 
Heating” provides information about the heating design water flow rate for radiant systems 
defined using a ZoneHVAC:LowTemperatureRadiant:VariableFlow input object. The units are 
m3/s. This internal variable is useful for scaling the flow rates assigned to the “Water Mass 
Flow Rate” control in the “Hydronic Low Temp Radiant” EMS actuator.  

Hydronic Low Temp Radiant Design Water Mass Flow Rate for Cooling 

The internal variable called “Hydronic Low Temp Radiant Design Water Mass Flow Rate for 
Heating” provides information about the cooling design water flow rate for radiant systems 
defined using a ZoneHVAC:LowTemperatureRadiant:VariableFlow input object. The units are 
m3/s. This internal variable is useful for scaling the flow rates assigned to the “Water Mass 
Flow Rate” control in the “Hydronic Low Temp Radiant” EMS actuator.  
   

On-Site Electricity Production 

Generator Nominal Ratings 

The internal variables called “Generator Nominal Maximum Power” and “Generator Nominal 
Thermal To Electric Power” provide information about the nominal capacity of a generator to 
produce electricity and heat. The values made available here are those listed in the 
associated ElectricLoadCenter:Generators input object. The power is expressed in Watts.  

The thermal-to-electric ratio describes how the nominal thermal output compares to the 
nominal electrical output and is useful for characterizing combined heat and power (CHP) 
units.  

Electrical Storage 

The internal variable called “Electrical Storage Maximum Capacity” provides information 
about the capacity of electrical storage devices. This is the value of the field called Maximum 
Storage Capacity in the ElectricLoadCenter:Storage:Simple input object. The units are in 
Joules. 

Sizing  

Several internal variables relate to sizing calculations. Although the primary intent for the 
EMS is to enable custom controls for operation, using internal variables is a prime example of 
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extending the power of user-defined calculations to control certain aspects of sizing 
calculations.  

Sizing:Zone 

A series of internal variables is available related to zone sizing:  

 Final Zone Design Heating Air Mass Flow Rate (kg/s) 
 Intermediate Zone Design Heating Air Mass Flow Rate (kg/s) 
 Final Zone Design Cooling Air Mass Flow Rate (kg/s) 
 Intermediate Zone Design Cooling Air Mass Flow Rate (kg/s) 
 Final Zone Design Heating Load (W) 
 Intermediate Zone Design Heating Load (W) 
 Final Zone Design Cooling Load (W) 
 Intermediate Zone Design Cooling Load (W) 
 Final Zone Design Heating Air Density (kg/m3) 
 Intermediate Zone Design Heating Air Density (kg/m3) 
 Final Zone Design Cooling Air Density (kg/m3) 
 Intermediate Zone Design Cooling Air Density (kg/m3) 
 Final Zone Design Heating Volume Flow (m3/s) 
 Intermediate Zone Design Heating Volume Flow (m3/s) 
 Final Zone Design Cooling Volume Flow (m3/s) 
 Intermediate Zone Design Cooling Volume Flow (m3/s) 
 Zone Outdoor Air Design Volume Flow Rate (m3/s) 

Sizing:System 

A series of internal variables is available related to air system sizing: 

 Intermediate Air System Main Supply Volume Flow Rate (m3/s) 
 Intermediate Air System Coincident Peak Cooling Mass Flow Rate (kg/s) 
 Intermediate Air System Coincident Peak Heating Mass Flow Rate (kg/s) 
 Intermediate Air System Noncoincident Peak Cooling Mass Flow Rate (kg/s) 
 Intermediate Air System Noncoincident Peak Heating Mass Flow Rate (kg/s) 
 Intermediate Air System Heating Volume Flow Rate (m3/s) 
 Intermediate Air System Cooling Volume Flow Rate (m3/s) 
 Air System Cooling Design Sensible Capacity (W) 
 Air System Heating Design Sensible Capacity (W) 
 Air System Preheating Design Sensible Capacity (W) 
 Air System Outdoor Air Design Volume Flow Rate (m3/s) 
 Air System Cooling Design Mixed Air Temperature (C) 
 Air System Cooling Design Mixed Air Humidity Ratio (kgWater/kgDryAir) 
 Air System Cooling Design Return Air Temperature (C) 
 Air System Cooling Design Return Air Humidity Ratio (kgWater/kgDryAir) 
 Air System Cooling Design Outdoor Air Temperature (C) 
 Air System Cooling Design Outdoor Air Humidity Ratio (kgWater/kgDryAir) 
 Air System Heating Design Mixed Air Temperature (C) 
 Air System Heating Design Mixed Air Humidity Ratio (kgWater/kgDryAir) 
 Air System Heating Design Return Air Temperature (C) 
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 Air System Heating Design Return Air Humidity Ratio (kg/kg) 
 Air System Heating Design Outdoor Air Temperature (C) 
 Air System Heating Design Outdoor Air Humidity Ratio (kg/kg) 

Sizing:Plant 

An internal variable is available for plant system sizing.  
 Plant Design Volume Flow Rate (m3/s) 
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EMS Sensors 

This section provides more information about EMS sensors.  

The input object EnergyManagementSystem:Sensor is simple but quite powerful. It reuses 
the normal EnergyPlus output variables to provide a general way of obtaining a wide variety 
of input data with minimal complications.  

One odd result of the approach taken for EMS sensors is that information about the available 
sensors is derived from what are usually the outputs of EnergyPlus. The RDD file is an 
important resource for EMS users. The RDD file is an output from running EnergyPlus and is 
called “eplusout.rdd” (but you may rename it to <your-filename>.rdd with a run manager such 
as EP-Launch). This output file is often needed to develop EMS input, so you may need to do 
an initial run of the model with traditional controls to obtain an RDD file. The contents of an 
RDD file will vary depending on the type of model. Once you have experience and familiarity 
with the outputs expected from a model, you should not need to prerun models, as you will be 
able to foresee the available output. The RDD file from a similar model with the same types of 
components and systems can also be used as a guide for what will be available in a specific 
model.  

Variable Types 

Various types of output variables in EnergyPlus can be used as sensors in the EMS. It is 
important to understand some distinctions.  

• Reported variables have two update frequencies:  zone and system. Zone variables 
are updated for each zone timestep. System variables are updated for each system 
timestep.  

• Reported variables have two types of content:  averaged and summed. Averaged 
variables are state variables such as temperature and mass flow rate. Summed 
variables are quantities of energy such as electricity use.  

Schedules 

The EnergyManagementSystem:Sensor object can also provide scheduled data for use in Erl 
programs. Because schedule values are available as outputs that use the “Schedule Value” 
output, they can also be mapped as sensors. You can use any of the various types of 
schedule input objects to define a schedule. The schedule does not need to be used 
elsewhere in the model. The value of the schedule is then mapped to an EMS variable with 
the Schedule Value report variable. When used with the Schedule:File input object, the 
sensor object can import time series data into the EMS from an external file. One application 
might be to test a proposed EMS algorithm with real experimental data.  
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EMS Actuators  

This section provides details about EMS actuators, the conduits by which Erl programs 
control EnergyPlus simulations. They actuate selected features inside EnergyPlus. Rather 
than add a new set of controls and component models that have EMS awareness, they 
generally override established features.  

Internal to EnergyPlus are two separate lists of actuators:  those that are available for use, 
and those that are being used in the EMS. While implementing the EMS, developers have 
added code to control points to make them available for use in EMS. The actuators available 
in a given model depend on the non-EMS-related content of the input file. Similar to how 
EnergyPlus reports the available output variables to the RDD file, a list of available actuators 
is written to the EDD file (depending on the settings in Output:EnergyManagementSystem). 
Note that the EDD file is ONLY produced if you have set up EMS / Erl programs. To use an 
actuator in EMS, you need to enter an EnergyManagementSystem:Actuator input object. The 
EDD file contains information needed for this input object; however, it is not available until 
after the output has been generated from a previous run. If you do not see a particular 
actuator in the EDD output file, it is not available in EMS for that particular model. There is no 
way to create a new actuator (except by modifying EnergyPlus source code); you can only 
customize the behavior of current actuators. If you need an actuator that you suspect could 
be provided by the program but is not available, you can use the regular system(s) for user 
support to request it be added to the program. New actuators are added to the program from 
time to time so the availability of actuators will grow with each new release. 

Actuators override things inside EnergyPlus whenever the actuator’s Erl variable is set to a 
value other than “Null.”  Null is a special built-in variable used to deactivate an actuator. Once 
an actuator starts overriding, it will continue to do so until the actuator’s Erl variable is set to 
Null. You should set the actuators to Null whenever you want the EMS to revert to normal 
operation.  

The rest of this section provides details about specific actuators.  

HVAC Systems 

System Node Setpoints 

A series of actuators is available for all the setpoints that can be placed on system nodes. 
System nodes are used to define air and plant loops, and a natural application of EMS is to 
control the setpoints at these nodes. The node actuators are all called “System Node 
Setpoint.”  There are nine control types:  

• Temperature Setpoint, (°C) 

• Temperature Minimum Setpoint (°C) 

• Temperature Maximum Setpoint (°C) 

• Humidity Ratio Setpoint (kg H2O/kg dry air) 

• Humidity Ratio Minimum Setpoint (kg H2O/kg dry air) 

• Humidity Ratio Maximum Setpoint (kg H2O/kg dry air) 

• Mass Flow Rate Setpoint (kg/s) 

• Mass Flow Rate Minimum Setpoint (kg/s) 

• Mass Flow Rate Maximum Setpoint (units kg/s) 
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Using these actuators is natural with an EMS. Typically, the controller would place the 
setpoint on the outlet node. Then the component’s low-level controller should operate to meet 
the leaving setpoint. Setting the setpoints on nodes should be a common application for the 
EMS.  

Although all nine possible setpoints are available as EMS actuators, it does not follow that 
EnergyPlus can use all of them. Most components can use only one or two setpoints. If a 
component cannot control to meet the setpoints on a node, the actuator will do nothing.  

Zone HVAC Control 

Several actuators relate to HVAC zone controls for temperature, humidity, and comfort.  

• Two actuators called “Zone Temperature Control” are available with the control types 
of “Heating Setpoint” and “Cooling Setpoint.”  These enable you to directly override 
the zone-by-zone heating and cooling setpoints. The units are in degrees Celsius. 
The unique identifier is the zone name.  

• Two actuators called “Zone Humidity Control” are available with the control types 
“Relative Humidity Humidifying Setpoint” and “Relative Humidity Dehumidifying 
Setpoint.”  These enable you to directly override the zone-by-zone humidity control 
setpoints. The units are in percent relative humidity. The unique identifier is the zone 
name.  

• Two actuators called “Zone Comfort Control” are available with the control types 
“Heating Setpoint” and “Cooling Setpoint.”  These enable you to directly override the 
zone-by-zone comfort control setpoints. The units are predicted mean vote (PMV). 
The unique identifier is the zone name.  

Plant Supervisory Control 

Several levels of actuators are available for on/off supervisory control of Plant systems.  
• Each plant (and condenser) loop has an actuator called “Plant Loop Overall” 

available with the control type “On/Off Supervisory.”  Setting the value of this 
actuator to 1.0 directs the overall plant to loop to run normally based on other 
controls. Setting the value of this actuator to 0.0 directs the overall plant loop to shut 
down regardless of what other controls indicate.  

• Each plant (and condenser) loop has actuators called “Supply Side Half Loop” and 
“Demand Side Half Loop” that are available with the control type “On/Off 
Supervisory.”  Setting the value of this actuator to 1.0 directs the plant’s loop side to 
run normally based on other controls. Setting the value of this actuator to 0.0 directs 
the plant’s loop side to shut down regardless of what other controls indicate.  

• Each plant (and condenser) loop has a series of actuators called “Supply Side 
Branch” and “Demand Side Branch” that are available with the control type “On/Off 
Supervisory.”  These are available for each individual branch in a loop. Setting the 
value of this actuator to 1.0 directs the plant’s branch to run normally based on 
other controls. Setting the value of this actuator to 0.0 directs the plant’s branch to 
shut down regardless of what other controls indicate.  

• Each plant (and condenser) loop has a series of actuators called “Plant Component 
*” that are available with the control type “On/Off Supervisory.”  These are available 
for each individual component on a loop. Setting the value of this actuator to 1.0 
directs the component to run normally based on other controls. Setting the value of 
this actuator to 0.0 directs the component to shut down regardless of what other 
controls indicate.  
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Outdoor Air System Node Conditions 

Actuators called “Outdoor Air System Node” are available with control types called “Drybulb 
Temperature” and “Wetbulb Temperature.”  The units are degrees Celsius. These actuators 
are available for all system nodes that are listed in either an OutdoorAir:Node or 
OutdoorAir:NodeList input object. You should probably set both the drybulb and wetbulb 
temperatures to ensure a full description of the moist air conditions.  

The air system and many component models require you to specify a node as an outdoor air 
node to obtain values for the outdoor conditions. For example, outdoor air nodes are used at 
the inlet to an outdoor air mixer or at the inlet of the heat rejection side of a component 
model. Typically this is the weather data value for outdoor conditions. But local variations in 
microclimate may shift the local outdoor air temperature to differ slightly from the weather 
data. (Currently the only local variation model for this effect in EnergyPlus varies the outdoor 
air conditions as a function of height.)  If you want to experiment with other models for local 
variations in outdoor air conditions, this EMS actuator allows you to override the outdoor 
temperature at a particular system node with any model that can be implemented in an Erl 
program. For example (although better models for the changes in conditions may need be 
developed), this actuator could be used to examine the energy impacts of warmer outdoor air 
temperatures experienced by a rooftop packaged HVAC system sitting on a black roof or the 
cooler conditions experienced by a unit that is located on the shaded side of a building.  
Another example is to make use of a separate model, outside of EnergyPlus, for some 
unique type of component (such as a labyrinth or earth-tube) that preconditions outdoor air; 
the results of that model could be fed into the air system model in EnergyPlus using these 
actuators. 

AirLoopHVAC Availability Status 

This actuator is available in all models with central, or primary, air systems that are entered 
with the object “AirLoopHVAC.”  Various availability managers use the air loop’s availability 
status to override control of the central air system fan. The fan may be scheduled to be 
unavailable during certain times to shut down the system when it is not needed. However, 
there may be times when the air system should be started to protect from freezing, for 
example. This actuator can force an air system to start up or shut down.  

The control is actuated by setting values for the availability status. The settings are numeric, 
but represent discrete states the status can take. The following settings are valid:  

• 0.0 (= NoAction). This tells the air system to do whatever it would usually do without 
any special override status.  

• 1.0 (= ForceOff). This overrides the air system to shut down when it would normally 
want to run.  

• 2.0 (= CycleOn). This overrides the air system to start up when it would normally be 
off.  

• 3.0 (= CycleOnZoneFansOnly). This overrides only the zone fans (not the central 
fans) if they would normally be off.  

Ideal Loads Air System 

An actuator called “Ideal Loads Air System” is available with control types called “Air Mass 
Flow Rate” (supply air), “Outdoor Air Mass Flow Rate,” “Air Temperature,” and “Air Humidity 
Ratio.”  These are available in models that use the ideal loads air system, formerly known as 
purchased air. The units are kg/s for mass flow rate, C for temperature and kg-H2O/kg-dry air 
for humidity ratio. The unique identifier is the user-defined name of the 
ZoneHVAC:IdealLoadsAirSystem input object.  
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For Air Temperature and Air Humidity Ratio, the overrides are absolute. They are applied 
after all other limits have been checked. For mass flow rate, the overrides are not absolute, in 
that the model has additional internal controls that may not always be overridden. The 
internal controls will still apply the capacity and flow rate limits if defined in the input object. 
The EMS override affects the flow rate only if the air system is on. If the air system is “off,” 
the mass flow is zero regardless of the actuator setting. The internal model controls will turn 
off the air system if the zone is in the dead band or if it is scheduled “off” by availability 
managers. This behavior allows you to use the internal controls to determine when the air 
should cycle on, as for a constant volume system that cycles to achieve control. If both the 
Air Mass Flow Rate and Outdoor Air Mass Flow Rate are overridden, the Outdoor Air Mass 
Flow Rate will not be allowed to be greater than the override value for Air Mass Flow Rate. 

Fan 

Actuators called “Fan” are available with the control types “Fan Air Mass Flow Rate,” “Fan 
Pressure Rise,” and “Fan Total Efficiency.”  These provide direct control over the fan 
operation in an air system. The EMS program can override the flow rate by using kg/s. It can 
override the total pressure rise at the fan by using Pascals. And it can override the fan 
efficiency on a scale from 0.0 to 1.0. The unique identifier is the name of the fan in the Fan 
input objects. 
An actuator is also available for overriding the autosize value for the fan’s design air flow rate.  
This actuator is called “Fan” and the control type is “'Fan Autosized Air Flow Rate” with units 
in m3/s. It is only useful from the calling point named AfterComponentInputReadIn. 

DX Cooling Coils 

Actuators are available for overriding the autosize values related to the size of single speed 
DX coils.  Actuators called “Coil:Cooling:DX:SingleSpeed” are available with control types 
“Autosized Rated Air Flow Rate” (in m3/s), “Autosized Rated Sensible Heat Ratio” (in W/W), 
and “Autosized Rated Total Cooling Capacity” (in W).  These are only useful from the calling 
point named AfterComponentInputReadIn. 

Unitary Equipment 

Actuators called “Unitary HVAC” are available with the control types “Sensible Load Request” 
and “Moisture Load Request.”  These control the operation of unitary equipment. Normally 
these systems operate to meet zone loads, but these actuators allow you to override the 
controls of unitary systems. The units are in Watts. The unique identifier is the name of the 
unitary equipment in the input objects.  
Actuators are available for overriding the autosize values related to supply air flow rates 
some unitary HVAC equipment.  These actuators allow selectively altering the outcome of 
sizing routines and are used from the calling point named AfterComponentInputReadIn.  The 
units are m3/s.    

• An actuator called “AirLoopHVAC:Unitary:Furnace:HeatOnly” is available with control 
type “Autosized Supply Air Flow Rate.”   

• An actuator called “AirLoopHVAC:UnitaryHeatOnly” is available with control type 
“Autosized Supply Air Flow Rate.”   

• Actuators called “AirLoopHVAC:Unitary:Furnace:HeatCool” and 
“AirLoopHVAC:UnitaryHeatCool” are available with control types “Autosized Supply 
Air Flow Rate,”  “Autosized Supply Air Flow Rate During Cooling Operation,” 
“Autosized Supply Air Flow Rate During Heating Operation,” and “Autosized Supply 
Air Flow Rate During No Heating or Cooling Operation.” 

• An actuator called “AirLoopHVAC:UnitaryHeatPump:AirToAir” is available with control 
type “Autosized Supply Air Flow Rate.”   

• An actuator called “AirLoopHVAC:UnitaryHeatPump:WaterToAir” is available with 
control type “Autosized Supply Air Flow Rate.”   
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AirTerminal:SingleDuct:Uncontrolled 

An actuator called “AirTerminal:SingleDuct:Uncontrolled” is available with a control type 
called “Mass Flow Rate.”  This actuator is available in models that use the direct air terminal. 
The units are kg/s. This actuator is used to control the flow rate. Normally, the flow rate of 
direct air terminals is fixed by the input or sizing results, but this actuator provides a way to 
override the flow with Erl programs.  

Outdoor Air Controller 

An actuator called “Outdoor Air Controller” is available with the control type called “Air Mass 
Flow Rate.”  This provides override control over the rate of outdoor air. The units are kg/s. 
The unique identifier is the name of the Controller:OutdoorAir input object.  

Plant Load Profile  

Actuators called “Plant Load Profile” are available with the control types called “Mass Flow 
Rate” (in kg/s) and “Power” (in W). The unique identifier is the name of the LoadProfile:Plant 
input object. These actuators provide override control over the loads placed on a plant 
system by a plant load profile. 

Pump 

An actuator called “Pump” is available with the control type “Pump Mass Flow Rate” (in kg/s). 
This allows you to override the flow rate produced by a pump. The unique identifier is the 
name of Pump Input object.  

Window Air Conditioner 

An actuator called “Window Air Conditioner” is available with a control type called “Part Load 
Ratio.”  This is nondimensional and takes numbers between 0.0 and 1.0. The unique 
identifier is the name of the ZoneHVAC:WindowAirConditioner input object.  

Low Temperature Radiant Hydronic 

Actuators called “Hydronic Low Temp Radiant” and “Constant Flow Low Temp Radiant” are 
available with the control type “Water Mass Flow Rate” (in kg/s). This allows you to override 
the flow of water through hydronic radiant systems. The unique identifier is the name of either 
the ZoneHVAC:LowTemperatureRadiant:VariableFlow or ZoneHVAC:LowTemperature 
Radiant:ConstantFlow input objects.  

Variable Refrigerant Flow Heat Pump Air Conditioner 

An actuator called “Variable Refrigerant Flow Heat Pump” is available with a control type 
called “Operating Mode.”  This is nondimensional and takes numbers between 0.0 and 2.0 
where 0.0 means the system is off, 1.0 means the system is in cooling mode, and 2.0 means 
the system is in heating mode. The unique identifier is the name of the 
AirConditioner:VariableRefrigerantFlow input object. 

Variable Refrigerant Flow Terminal Unit 

An actuator called “Variable Refrigerant Flow Terminal Unit” is available with a control type 
called “Part Load Ratio.”  This is nondimensional and takes numbers between 0.0 and 1.0. 
The unique identifier is the name of the ZoneHVAC:TerminalUnit:VariableRefrigerantFlow 
input object. This control over rides the part-load ratio of the terminal unit and can be applied 
only when the cooling or heating minimum and maximum outdoor temperature limits of the 
condenser (i.e., the AirConditioner:VariableRefrigerantFlow object) are not exceeded. 
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Thermal Envelope 

Window Shading Control 

This actuator is available in models that also have the WindowProperty:ShadingControl input 
objects. The user-defined name for the WindowProperty:ShadingControl is not used to 
identify unique window shading controls; rather, the window name is used to identify the 
actuator. This is because there could be multiple windows, all with shades, each of which is 
governed by a single WindowProperty:ShadingControl input object. The EMS actuator can 
override the control actions for each window separately.  

The control is actuated by setting values for the control status. The settings are numeric but 
represent discrete states the control can take. The appropriate values depend on the type 
and position of the shading device. There are three basic types of shading devices:  
switchable glazings, shades, and blinds. (Shades are described with WindowMaterial:Shade 
input objects. Blinds are described with WindowMaterial:Blind input objects.)  Shades and 
blinds can be situated in the exterior, between the glass, or in the interior.  

The following settings are valid: 

• –1.0:  No shading device. 

• 0.0:  Shading device is off (applies to shades and blinds). 

• 1.0:  Interior shade is on. 

• 2.0: Glazing is switched to a darker state (switchable glazings only). 

• 3.0:  Exterior shade is on. 

• 6.0:  Interior blind is on. 

• 7.0:  Exterior blind is on. 

• 8.0:  Between-glass shade is on. 

• 9.0:  Between-glass blind is on. 

Slat Angle 

If the shading device is a blind, there is also a control type called “Slat Angle.”  This angle 
control is a continuous numeric value from 0.0 to 180.0. The angle is defined as between the 
glazing system’s outward normal and the slat’s outward normal (see the diagram in the input 
output reference under WindowMaterial:Blind).  

Surface Convection Heat Transfer Coefficient 

Two actuators called “Surface” are available with the control types of “Interior Surface 
Convection Heat Transfer Coefficient” and “Exterior Surface Convection Heat Transfer 
Coefficient.”  These provide direct control over the convection coefficient. The units are W/m2-
K. The unique identifier is the surface name.  

This actuator controls the heat transfer modeling. Changes in air distribution systems can 
affect the interior surface convection coefficients. A sheltered exterior surface may have a 
lower surface heat transfer coefficient. This actuator provides a method of applying new 
models for convection coefficients. 

Material Surface Properties 

Three actuators are available for controlling the surface properties material related to 
absorptance. Those material layers used in a Construction object that lie at the outside and 
the inside of the assembly determine the surface properties of a heat transfer surface.  
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Actuators called “Material” are available with the control types “Surface Property Solar 
Absorptance,” “Surface Property Thermal Absorptance,” and “Surface Property Visible 
Absorptance.”  These are dimensionless parameters between 0.0 and 1.0.  These actuators 
are useful for modeling switchable coatings such as thermochromic paints.  

Surface Construction State 

An actuator is available for controlling the construction assigned to a surface that can be 
useful for modeling dynamic technologies for thermal envelopes.  These actuators are called 
“Surface” and have a control type “Construction State.”  This actuator is used in conjunction 
with the input object called EnergyManagementSystem:ConstructionIndexVariable.  Each 
Construction object defined in an input file has an index that points to where the data for that 
construction are stored in the program’s internal data structures.  The 
EnergyManagementSystem:ConstructionIndexVariable input object is used to create and fill a 
global Erl variable with the value that points to the specific construction named in the object. 
The Erl variable is what you assign to the construction state actuator’s variable to override 
the construction assigned to a particular surface.  When the actuator is set to Null, the 
surface reverts to the Construction originally referenced by the surface in the input file.  
Using the surface construction state actuator brings with it a high degree of risk when it 
comes to modeling thermal heat capacity and transient heat transfer in opaque surfaces.  If 
this actuator is used inappropriately, for example to assign different constructions, to a single 
surface, that have radically different heat storage capacities, then the heat transfer modeling 
results may not be physically accurate.  When a construction state is overridden using this 
actuator, the thermal history data that evolved while using the previous construction are 
reused for the new construction. When this actuator is used, the program attempts to detect if 
incompatible constructions are being assigned. In some cases it issues a warning and allows 
the assignments to proceed, in others it warns and doesn’t allow the assignment to proceed.  
If the original construction assigned to a surface has internal source/sink (defined using 
Construction:InternalSource) then any assignments to the surface must also be internal 
source constructions.  If using the heat transfer algorithm called ConductionFiniteDifference, 
then the constructions must have the same number of finite difference nodes or the 
assignment is not allowed.  The construction state actuator cannot be used in conjunction 
with the heat transfer algorithms called ConductionFiniteDifferenceSimplified or 
CombinedHeatAndMoistureFiniteElement.   

Surface Boundary Conditions 

Four actuators, called “Other Side Boundary Conditions,” are available for controlling the 
convection and radiation boundary conditions for surfaces that use 
“OtherSideConditionsModel.”  Each instance of a 
SurfaceProperty:OtherSideConditionsModel object will make available these actuators with 
the following four control types: 

 “Convection Bulk Air Temperature.”  This is the temperature of the ambient air 
exposed to the surface, in degrees C.  This is the temperature used for surface 
convection heat transfer boundary conditions on the outdoor, outside-face, other side 
of the surface. 

 “Convection Heat Tranfer Coefficient.”  This is the heat transfer coefficient, in W/(m-
K) used for surface convection boundary conditions on the outdoor, outside-face, or 
other side of the surface. 

 “Radiation Effective Temperature.”  This is the effective temperature of the 
environment surrounding the surface, in degrees C.  This is the temperature used for 
surface thermal radiation heat transfer boundary conditions on the outdoor, outside-
face, other side of the surface.  

 “Radiation Linear Heat Transfer Coefficient.”  This is the linearized heat transfer 
coefficient, in W/(m-K), used for surface thermal radiation boundary conditions on the 
outdoor, outside-face, or other side of the surface.   
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When using these actuators, values should be set for all four types.  This boundary condition 
has no solar, only convection and radiation.   

Air Movement 

Zone Infiltration 

An actuator called “Zone Infiltration” is available with a control type called “Air Exchange Flow 
Rate” (m3/s). This provides override control over the zone-by-zone infiltration rate. The unique 
identifier is the name of the ZoneInfiltration object.  

Zone Ventilation 

An actuator called “Zone Ventilation” is available with a control type called “Air Exchange 
Flow Rate” (m3/s). This provides override control over the zone-by-zone ventilation rate. This 
simple ventilation model is provided by the input object ZoneVentilation. The unique identifier 
is the name of the ZoneVentilation object.  

Zone Mixing 

An actuator called “ZoneMixing” is available with a control type called “Air Exchange Flow 
Rate” (m3/s). This provides override control over the zone-to-zone mixing rate. This simple air 
movement model is provided by the input object ZoneMixing. The unique identifier is the 
name of the ZoneMixing object.  

Zone Cross Mixing 

An actuator called “ZoneCrossMixing” is available with a control type called “Air Exchange 
Flow Rate” (m3/s). This provides override control over the interzonal mixing rate. This is the 
simple air movement model provided by the input object ZoneCrossMixing. The unique 
identifier is the name of the ZoneCrossMixing object.  

Airflow Network Openings 

An actuator called “AirFlow Network Window/Door Opening” is available with a control type 
called “Venting Opening Factor.”  It is available in models that have operable openings in the 
Airflow Network model and that are entered by using either 
AirflowNetwork:MultiZone:Component:DetailedOpening or 
AirflowNetwork:MultiZone:Component:SimpleOpening input objects. This control allows you 
to use EMS to vary the size of the opening during the airflow model calculations, such as for 
natural and hybrid ventilation.  

The unique identifier is the name of the window or door, not the name of the associated 
airflow network input objects. The actuator control involves setting the value of the opening 
factor between 0.0 and 1.0. 

Internal Gains 

People 

An actuator called “People” is available with a control type called “Number of People.”  This 
allows you to dictate the number of people in a zone. The units are persons. The unique 
identifier is the name of the people input object. Because you cannot really control people, 
this is an example the EMS in EnergyPlus departing from the real world of building EMS.  
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Lights 

An actuator called “Lights” is available with a control type called “Electric Power Level” (in W)  
This allows you to set the lighting power associated with each Lights input object. The unique 
identifier is the name of the Lights input object.  

Electric Equipment 

An actuator called “ElectricEquipment” is available with a control type called “Electric Power 
Level” (in W). This allows you to set the power associated with each ElectricEquipment input 
object. The unique identifier is the name of the ElectricEquipment input object.  

Gas Equipment 

An actuator called “GasEquipment” is available with a control type called “Gas Power Level” 
(in W). This allows you to set the power associated with each GasEquipment input object.  
The unique identifier is the name of the GasEquipment input object.  

Hot Water Equipment 

An actuator called “HotWaterEquipment” is available with a control type called “District 
Heating Power Level” (in W). This allows you to set the power associated with each 
HotWaterEquipment input object. The unique identifier is the name of the 
HotWaterEquipment input object.  

Steam Equipment 

An actuator called “SteamEquipment” is available with a control type called “District Heating 
Power Level” (in W). This allows you to set the power associated with each SteamEquipment 
input object. The unique identifier is the name of the SteamEquipment input object. 

Other Equipment 

An actuator called “OtherEquipment” is available with a control type called “Power Level” (in 
W). This allows you to set the power associated with each OtherEquipment input object. The 
unique identifier is the name of the OtherEquipment input object. 

Other equipment offers a way to adjust the zone air energy balance without consuming any 
energy resources. 

Baseboard 

An actuator called “ZoneBaseboard:OutdoorTemperatureControlled” is available with a 
control type called “Power Level” (in W). The unique identifier is the name of the 
ZoneBaseboard:OutdoorTemperatureControlled input object.  

On-Site Electricity Production 

Generator Dispatch 

An actuator called “On-Site Generator Control” is available with a control type called 
“Requested Power.” This actuator is available in models that have on-site electrical 
generators. The units are Watts. This control allows you to use the EMS to override how 
requests for power generation are dispatched.  

The unique identifier is the name of each generator. The Erl programs should set the actuator 
value with Watts. Depending on the type and limitations of the generator being modeled, the 
power production may not exactly meet what is requested.  
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Electrical Storage 

Actuators called “Electrical Storage” are available with control types called “Power Draw 
Rate” and “Power Charge Rate” (in W). These are available in models that have 
ElectricLoadCenter:Storage:Simple input objects. These controls allow you to use the EMS to 
override the rate of charging or drawing from storage.  

The unique identifiers are the names of the storage objects. For a given timestep, the 
electrical storage device can only charge or draw. If the EMS tries to override charge and 
draw during the same timestep, the program will find the larger of the two and apply the 
difference in that direction.  

Refrigeration 

Condenser Operation 

An actuator called “Refrigeration:System” is available with a control type called “Minimum 
Condensing Temperature.”  This actuator is available in models that use the 
Refrigeration:System object.  This actuator allows the user to override the usually constant 
value that is input into the field called Minimum Condensing Temperature in the 
Refrigeration:System object.  This allows operating the condenser using custom control 
algorithms. 

General 

Schedules 

A series of actuators is available for overriding schedule values. The following actuators are 
available with the control type called “Schedule Value”:  Schedule:Year, Schedule:Compact, 
Schedule:File, and Schedule:Constant. The units are not known by the schedule and are 
determined by the model that references the schedule. The unique identifier is the name of 
schedule.  

If you try to use a particular schedule as input to calculations that modify that schedule, you 
will be in a circular situation with unexpected results. The modified schedule will lose the 
original information (unless the actuator is set to Null) and the modifications will be reapplied 
on top of previous modifications. When this situation arises, use a copy of the original 
schedule as input to the Erl program so you have the original schedule values.  

Curves 

An advanced actuator called “Curve” with a control type called “Curve Result” is available 
whenever any generic curve objects are used. This allows you to override the results 
generated by these curves. The units are not known by the actuator and depend on how the 
curve is being used by the component model that calls it.  

This actuator must be used with caution. The EMS does not necessarily have access to the 
independent variables used by the models when the curves are evaluated during normal 
evaluation, so in most situations you will probably need to examine EnergyPlus source code 
to use this actuator correctly.  

Weather Data 

A series of actuators are available for overriding the values of weather data that are normally 
derived from the .epw weather file.  These provide the ability to alter weather data and were 
originally requested for use with ExternalInterface for using measured data.  The following 
can be overridden: outdoor drybulb, outdoor dewpoint, outdoor relative humidity, diffuse 
solar, direct solar, wind speed, and wind direction.  
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Sizing 

Sizing:Zone 

A series of actuators called “Sizing:Zone” is available. These offer a way to override the 
results of zone sizing calculations. The unique identifier for each is the name of the Zone 
Input object. The following control types are available: 

• Zone Design Heating Air Mass Flow Rate (kg/s) 

• Zone Design Cooling Air Mass Flow Rate (kg/s) 

• Zone Design Heating Load (W) 

• Zone Design Cooling Load (W)  

• Zone Design Heating Vol Flow (m3/s) 

• Zone Design Cooling Vol Flow (m3/s) 

System Sizing 

A series of actuators called “Sizing:System” is available. These offer a way to override the 
results of air system sizing calculations. The unique identifier is the name of the 
AirLoopHVAC input object. The following control types are available: 

• Main Supply Volume Flow Rate (m3/s) 

• Main Supply Coincident Peak Cooling Mass Flow Rate (kg/s) 

• Main Supply Coincident Peak Heating Mass Flow Rate (kg/s) 

• Main Supply Noncoincident Peak Cooling Mass Flow Rate (kg/s) 

• Main Supply Noncoincident Peak Heating Mass Flow Rate (kg/s) 

• Main Heating Volume Flow Rate (m3/s) 

• Main Cooling Volume Flow Rate (m3/s) 
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EMS Calling Points  

This section provides an overview of EnergyPlus’s program flow and describes the various 
places where you can use the EMS to initiate calls for custom controlling. The input object 
EnergyManagementSystem:ProgramCallingManager requires the user describe the timing for 
when the Erl programs are run. These EMS Calling Points correspond to places inside the 
EnergyPlus program where and when the EMS can be called to do something. The EMS 
offers a wide range of calling points. This section attempts to explain what you need to know 
about the EnergyPlus program flow so you can better understand which calling point to use 
for a particular application. Because the EMS needs to interact with the rest of the 
EnergyPlus computer program, you need a fairly high level of understanding of the inner 
workings of EnergyPlus. Finding the right point to insert your Erl override is a challenge. This 
is a complicated computer program. Using an interpreted language to override its calculations 
is no simple thing and should not be taken lightly. 

The best calling point will depend on the type of actuator being controlled and the intent of 
the override activity. Unfortunately, there is no easy way to explain the inner workings of a 
model as large as EnergyPlus, so this section includes only a brief overview. We attempt to 
provide useful recommendations for the types of control that are best suited for particular 
calling points. But for the full details you will need to refer to the EnergyPlus source code, 
which you can obtain with a developer license.  

This section starts with a series of three figures and then discusses them and the 14 calling 
points. Figure 1 shows the overall flow of an EnergyPlus model with some EMS calling 
points. Figure 2 shows the sequence for a single timestep with the remaining EMS calling 
points. Figure 3 is similar but shows the calling points for shortened system timesteps. These 
diagram the flow of procedures during a run from top to bottom.  
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Figure 1. Overall Program Flow and EMS Calling Points 
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Figure 2. Timestep Sequence with EMS Calling Points 
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Figure 3. System Timestep Sequence with EMS Calling Points 

When EnergyPlus runs a model, it first does various sizing and setup activities and then 
models the environment periods you ask for; e.g., design days and run periods. The built-in 
variable called CurrentEnvironment indentifies which of these is being simulated and any 
given time. Figure 1 diagrams the overall program flow starting at the top and listing certain 
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key steps in outline form. EnergyPlus models contain a lot of input, and the internal 
processes to acquire and process that input take some time to complete. Before the model 
starts doing final calculations, it may have to do various sizing calculations and automatically 
design the size of components. It will also go through special setup periods that model a 
truncated set of timesteps for each environment period. In the diagram, this initial phase is 
not finished until just before the design periods begin. Two EMS calling points that occur only 
once in a given run, EndOfZoneSizing and EndOfSystemSizing, can be triggered during this 
initial setup phase. During the phase called “Setup Simulation,” the various timestep-based 
calling points diagrammed in Figure 2 will also be called.  

Another thing that happens during the setup phase described above is that individual HVAC 
component models access their input data and do various setup calculations in preparation 
for the rest of the simulation.   An EMS calling point (added for Version 7) called 
“AfterComponentInputReadIn” is available for selected HVAC components that allows 
triggering Erl programs at a point just after the component’s input data have been read in but 
before the component’s sizing routines have executed.  This calling point is intended to be 
used with various actuators that are setup to override the autosize values that result from 
sizing. 

To model environment periods, EnergyPlus runs through a serious of timesteps. Figure 2 
diagrams the program flow for a single timestep where the timestep for the system modeling 
is equal to that for the zone load modeling. The system timestep can be shorter than the zone 
timestep. The usual process of modeling a timestep is to first calculate the zone loads during 
the “Predictor,” then model the response of the HVAC systems, and then calculate the 
resulting zone conditions during the “Corrector.”  Within the HVAC system modeling, some 
system iterations are used to iteratively solve a system of systems. Figure 3 is a slightly 
modified version Figure 2 that diagrams the situation when the timestep of the system 
calculations has been reduced to half the length of the zone timestep.  

Begin New Environment 

The calling point referred to with the keyword “BeginNewEnvironment” occurs once near the 
beginning of each environment period. Environment periods include sizing periods, design 
days, and run periods. This calling point will not be useful for control actions, but is useful for 
initializing variables and calculations that do not need to be repeated during each timestep. 
Once a value is set, Erl variables remember the value during the course of a simulation. 
Considerable repetition can be avoided by designing Erl programs to use this calling point for 
initializations and calculations that are needed only once. It is not called during individual 
timesteps. 

After New Environment Warmup Is Complete 

The calling point referred to with the keyword “AfterNewEnvironmentWarmUpIsComplete” 
occurs once near at the beginning of each environment period but after any warmup days are 
complete. This is similar to the previous calling point. Warmup days are used to condition the 
transient aspects of the model before proceeding with the first day. This will not be useful for 
control actions, but would be useful for reinitializing Erl programs with fresh values after the 
warmup days have finished running and the model is about to start the final timestep 
calculations for a particular environment period. 

Begin Timestep Before Predictor 

The calling point called “BeginTimestepBeforePredictor” occurs near the beginning of each 
timestep but before the predictor executes. “Predictor” refers to the step in EnergyPlus 
modeling when the zone loads are calculated. This calling point is useful for controlling 
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components that affect the thermal loads the HVAC systems will then attempt to meet. 
Programs called from this point might actuate the building envelope or internal gains based 
on current weather or on the results from the previous timestep. Demand management 
routines might use this calling point to reduce lighting or process loads, change thermostat 
settings, operate window shades, etc.  

After Predictor Before HVAC Managers 

The calling point called “AfterPredictorBeforeHVACManagers” occurs after predictor and 
before the traditional HVAC managers are called. It occurs at each timestep just after the 
predictor executes but before SetpointManager and AvailabilityManager models are called. It 
is useful for a variety of control actions. However, if there are conflicts, the EMS control 
actions could be overwritten by other SetpointManager or AvailabilityManager actions.  

After Predictor After HVAC Managers 

The calling point called “AfterPredictorAfterHVACManagers” occurs after the predictor and 
after the traditional HVAC managers have been called. It occurs at each timestep after the 
predictor executes and after the SetpointManager and AvailabilityManager models are called. 
It is useful for a variety of control actions. However, if there are conflicts, SetpointManager or 
AvailabilityManager actions may be overwritten by EMS control actions.  

Inside HVAC System Iteration Loop 

The calling point called “InsideHVACSystemIterationLoop” occurs before HVAC systems are 
modeled. Within a timestep, EnergyPlus loops over the HVAC model to solve a system of 
systems. It recurs after each HVAC system iteration within each timestep and can be used for 
a variety of control actions that affect system operation. Being within the iteration loop can 
increase the accuracy of control modeling when the inputs to the controls are also changing 
interactively. The disadvantage is extra computational expense.  

End of Zone Timestep Before Reporting 

The calling point called “EndOfZoneTimestepBeforeZoneReporting” occurs near the end of a 
zone timestep but before output variable reporting is finalized. It is useful for custom output 
variables that use the ZoneTimestep reporting frequency.  

End of Zone Timestep After Reporting 

The calling point called “EndOfZoneTimestepAfterZoneReporting” occurs at the end of a 
zone timestep after output variable reporting is finalized. It is useful for preparing calculations 
that will go into effect the next timestep. Its capabilities are similar to 
BeginTimestepBeforePredictor, except that input data for current time, date, and weather 
data align with different timesteps. 

End of System Timestep Before HVAC Reporting 

The calling point called “EndOfSystemTimestepBeforeHVACReporting” occurs near the end 
of a system timestep but before output variable reporting is finalized. It is useful for custom 
output variables that use the SystemTimestep reporting frequency. 
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End of System Timestep After HVAC Reporting 

The calling point called “EndOfSystemTimestepAfterHVACReporting” occurs at the end of a 
system timestep after output variable reporting is finalized.  

End of Zone Sizing 

The calling point called “EndOfZoneSizing” is used to alter the results of zone sizing 
calculations. It executes only once per simulation during the early stages and only if the 
model includes zone sizing calculations. It is not useful for control applications.  

End of System Sizing 

The calling point called “EndOfSystemSizing” is used to alter the results of air system sizing 
calculations. It executes only once per simulation and is not useful for control applications.  

After Component Model Input has Been Read In 

The calling point called “AfterComponentInputReadIn” is used to alter the results of individual 
autosize fields.  It executes whenever one of the selected components has finished reading in 
its input data.  Those, and only those, component models that have some type of actuator 
with an “Autosized” control type will also have this calling point.  This same calling point 
identifier is used for different HVAC components so programs executed from this point will be 
repeated.  Currently this calling point exists in three different places:  (1) after DX coil input, 
(2) after fan input, and (3) after unitary system input.  

User Defined Component Model 

The calling point called “UserDefinedComponentModel” is used with Erl programs that are 
associated with user defined component models.  This calling point is executed whenever a 
user-defined component model is called to simulate.  The user defined component models 
track which program calling managers are associated with the specific component and only 
those calling managers are executed when this calling point is triggered. This calling point is 
only used with calling managers referenced by the following input objects: 
PlantComponent:UserDefined, Coil:UserDefined, ZoneHVAC:ForcedAir:UserDefined, or 
AirTerminal:SingleDuct:UserDefined. 
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User-Defined Component Models 

This section provides an overview of how you can use EMS to create your own custom 
models for HVAC and plant equipment.  EMS can be used not only for controls and 
overriding the behavior of existing models, but also to implement entirely new component 
models of your own formulation.  Such user-defined component models are implemented by 
writing Erl programs, setting up internal variables, sensors, actuators and output variables 
that work in conjunction with a set of special input objects in the group called “User Defined 
HVAC and Plant Component Models.”   
This system provides a means of modeling new types of equipment that do not yet have 
models implemented in EnergyPlus.  The capability to add new custom models should have a 
wide variety of creative applications such as evaluating the annual energy performance 
implications of new types of equipment and providing a mechanism for including “exceptional 
calculation methods” in your EnergyPlus models. 
This section first introduces common characteristics of the user-defined component models 
and then goes into more detail on each of available component modeling shells that are used 
to connect user-defined models and algorithms to the rest of EnergyPlus’ HVAC and plant 
simulations.  

Common Characteristics 

In general, each of the user-defined components will: 
• Setup new EMS internal variables for the state conditions entering the component at 

each inlet node being used.  Internal variables serve a similar role as Sensors in 
terms of obtaining input data.  The difference is that they are updated just before the 
component model programs execute and therefore do not suffer the timestep lag 
issues that can be associated with sensors tied to output variables.  Whereas most 
EMS internal variables are constants, those intended for use with user-defined 
components are filled each time the component is simulated and vary over time with 
the most current data available. 

• Setup new EMS actuators for the state conditions at each outlet node being used.  
These actuators are not optional and must be used.  For each air or plant connection 
with an active outlet node, the associated actuators must be used and filled with valid 
values in order for the component model to be properly coupled to the rest of 
EnergyPlus.  Some of the components will also set the results at their inlet node, for 
example to request a mass flow rate.  

• Trigger one or more specific program calling manager(s) to execute EMS programs 
that are called to initialize, register, and size the component model.  

• Trigger one or more specific program calling manager(s) to execute EMS programs 
that are called to actually model the component when it is called to be simulated. 

The various user-defined components have some similar input fields.  Once the user gains 
familiarity with one of the components, many of the concepts will carry over to the other user-
defined components.  The separate objects are primarily for the purpose of distinguishing 
how user-defined components need to vary in order to fit with the rest of EnergyPlus.  
 

Zone Forced Air Unit 

The input object called ZoneHVAC:ForcedAir:UserDefined provides a shell for creating 
custom models of a device that serves as a single-zone HVAC unit that operates by 
circulating air in and out of the zone.  This device is analogous to those component models in 
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the Group -- Zone Forced Air Units, such as ZoneHVAC:PackagedTerminalAirConditioner or 
ZoneHVAC:WaterToAirHeatPump.   
In addition to the primary air connection that connects to the zone, there are options for 
additional connections to a second air stream (e.g. for outdoor ventilation or heat source or 
sink), up to three separate plant loop connections (e.g. hot water, chilled water, heat 
rejection), a water supply tank, a water collection tank, and a separate zone for skin losses. 
The zone unit is associated with a thermal zone (by the ZoneHVAC:EquipmentConnections 
and ZoneHVAC:EquipmentList objects).  In EnergyPlus, when there are controlled thermal 
zones with thermostat (and humidistat) controls, the central routines predict the loads that 
zone equipment need to meet in order to maintain control of the zone conditions.  When there 
are multiple types of equipment serving a zone, they are sequenced to meet heating or 
cooling loads in a particular order.  Rather than the total predicted load, the second or third 
devices need to know the load that remains after the earlier-sequenced devices have already 
operated on the zone.  The following internal variables are useful inputs for controlling zone 
equipment in your models: 

• An internal variable called “Remaining Sensible Load to Heating Setpoint” provides 
the current value for the sensible load, in [W], that remains for this device that if 
delivered will allow the zone to reach the heating setpoint under current conditions. 

• An internal variable called “Remaining Sensible Load to Cooling Setpoint” provides 
the current value for the sensible load, in [W], that remains for this device that if 
delivered will allow the zone to reach the cooling setpoint under current conditions. 

• An internal variable called “Remaining Latent Load to Humidifying Setpoint” provides 
the current value for the latent load, in [kg/s], that remains for this device that if 
delivered will allow the zone to reach the humidification setpoint under current 
conditions. 

• An internal variable called “Remaining Latent Load to Dehumidifying Setpoint” 
provides the current value for the latent load, in [kg/s], that remains for this device 
that if delivered will allow the zone to reach the dehumidification setpoint under 
current conditions.  

 

Primary Air Connection 

The primary air connection includes both an inlet and an outlet that are required to be used 
when using this component.  This is called the primary air connection because it is how the 
zone unit is connected to the zone.  The inlet to the custom zone unit is a node that is also an 
exhaust outlet from the zone.  The following EMS internal variables are made available for 
this inlet node and should be useful inputs to your own custom models: 

• An internal variable called “Inlet Temperature for Primary Air Connection,” provides 
the current value for the drybulb air temperature at the component’s inlet node, in [C]. 

• An internal variable called “Inlet Humidity Ratio for Primary Air Connection,” provides 
the current value for the moist air humidity ratio at the component’s inlet node, in [kg-
H2O/kg-dryAir] 

• An internal variable called “Inlet Density for Primary Air Connection,” provides the 
current value for the density of moist air at the component’s main inlet node, in 
[kg/m3]. 

• An internal variable called “Inlet Specific Heat for Primary Air Connection,” provides 
the current value for the specific heat of moist air at the component’s main inlet node, 
in [J/kg-C]. 

The inlet node also has an actuator associated with it so that the rate of air flow leaving the 
thermal zone and entering the unit can be passed to the rest of EnergyPlus. 
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• An actuator called “Primary Air Connection,” with the control type “Inlet Mass Flow 
Rate,” in [kg/s], needs to be used.  This will set the flow rate of air leaving the zone 
through the zone exhaust air node. 

The primary outlet for the custom zone unit is a node that is also an inlet to the zone.  The 
following EMS actuators are created for this outlet node and must be used to pass results 
from the custom model to the rest of EnergyPlus: 

• An actuator called “Primary Air Connection,” with the control type “Outlet 
Temperature,” in [C], needs to be used.  This will set the drybulb temperature of the 
air leaving the zone unit and entering the zone through the zone air inlet node. 

• An actuator called “Primary Air Connection,” with the control type “Outlet Humidity 
Ratio,” in [kg-H2O/kg-dryAir], needs to be used.  This will set the humidity ratio of the 
air leaving the zone unit and entering the zone through the zone air inlet node. 

• An actuator called “Primary Air Connection,” with the control type “Outlet Mass Flow 
Rate,” in [kg/s], needs to be used.  This will set the flow rate of air leaving the zone 
unit and entering the zone through the zone air inlet node. 

It is not required that the primary air connections inlet and outlet mass flow rates be identical.  
However, if there is an imbalance, then the model should use the secondary air connection to 
balance air mass flows.  

Secondary Air Connection 

The secondary air connection provides options for an added inlet node, or outlet node, or 
both depending on the user’s needs.  This separate air stream can be used for outdoor air 
ventilation or as a source or sink for energy.  The secondary air inlet node will often be 
defined to be an outdoor air node (ref. OutdoorAir:Node) but that is not required.  The 
secondary air outlet node can be used as relief exhaust when the unit is providing outdoor air 
ventilation.  If the secondary air outlet is not really connected to anything else and just 
releases air to the outdoors, then it isn’t necessary that moist air properties be set using 
actuators because they will not impact anything else in the model. 
If the secondary air connection inlet node is used, then the following internal variables and 
actuator are made available: 

• An internal variable called “Inlet Temperature for Secondary Air Connection,” 
provides the current value for the drybulb air temperature at the secondary inlet node, 
in [C]. 

• An internal variable called “Inlet Humidity Ratio for Secondary Air Connection,” 
provides the current value for the moist air humidity ratio at the secondary inlet node, 
in [kg-H2O/kg-dryAir] 

• An internal variable called “Inlet Density for Secondary Air Connection,” provides the 
current value for the density of moist air at the secondary inlet node, in [kg/m3]. 

• An internal variable called “Inlet Specific Heat for Secondary Air Connection,” 
provides the current value for the specific heat of moist air at the secondary inlet 
node, in [J/kg-C]. 

• An actuator called “Secondary Air Connection,” with the control type “Inlet Mass Flow 
Rate,” in [kg/s], needs to be used.  This will set the flow rate of air entering the zone 
unit through the secondary air connection inlet. 

If the secondary air connection outlet node is used, then the following actuators are created: 
• An actuator called “Secondary Air Connection,” with the control type “Outlet 

Temperature,” in [C], needs to be used.  This will set the drybulb temperature of the 
air leaving the zone unit through the secondary air outlet node. 

• An actuator called “Secondary Air Connection,” with the control type “Outlet Humidity 
Ratio,” in [kg-H2O/kg-dryAir], needs to be used.  This will set the humidity ratio of the 
air leaving the zone unit through the secondary air outlet node. 
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• An actuator called “Secondary Air Connection,” with the control type “Outlet Mass 
Flow Rate,” in [kg/s], needs to be used.  This will set the flow rate of air leaving the 
zone unit through the secondary air outlet node. 

Plant Connections 

The user defined zone unit can also be connected to up to three different plants to provide 
hydronic-based cooling, heating, and/or heat source or rejection.   
Although the zone unit actively conditions the zone, from the point of view of plant they are 
demand components.  These plant connections are always “demand” in the sense that the 
zone unit will place loads onto the plant loops serving it and are not configured to be able to 
meet plant loads in the way that supply equipment could (loading mode is always 
DemandsLoad).  These plant connections are always of the type that when flow is requested, 
the loop will be operated to try and meet the flow request and if not already running, these 
flow requests can turn on the loop (loop flow request mode is always 
NeedsFlowAndTurnsLoopOn). 
For plant loops, both the inlet and outlet nodes need to be used for each loop connection.  
The ZoneHVAC:ForcedAir:UserDefined object appears directly on the Branch object used to 
describe the plant.  The central plant routines require that each plant component be properly 
initialized and registered. Special actuators are provided for these initializations and they 
should be filled with values by the Erl programs that are called by the program calling 
manager assigned to the zone unit for model setup and sizing.  The following three actuators 
are created for each of “N” plant loops and must be used to properly register the plant 
connection: 

• An actuator called “Plant Connection N” with the control type “Minimum Mass Flow 
Rate,” in [kg/s], should be used.  This will set the so-called hardware limit for 
component’s minimum mass flow rate when operating.  (If not used, then the limit will 
be set to zero which may be okay for many if not most models.) 

• An actuator called “Plant Connection N” with the control type “Maximum Mass Flow 
Rate,” in [kg/s], needs to be used.  This will set the so-called hardware limit for the 
component’s maximum mass flow rate when operating.  

• An actuator called “Plant Connection N” with the control type “Design Volume Flow 
Rate,” in [m3/s], needs to be used.  This will register the size of the component for 
use in sizing the plant loop and supply equipment that will need to meet the loads. 

For each plant loop connection that is used, the following internal variables are available for 
inputs to the custom component model: 

• An internal variable called “Inlet Temperature for Plant Connection N” provides the 
current value for the temperature of the fluid entering the component, in [C]. 

• An internal variable called “Inlet Mass Flow Rate for Plant Connection N” provides the 
current value for the mass flow rate of the fluid entering the component, in [kg/s]. 

• An internal variable called “Inlet Density for Plant Connection N” provides the current 
value for the density of the fluid entering the component, in [kg/m3].  This density is 
sensitive to the fluid type (e.g. if using glycol in the plant loop) and fluid temperature 
at the inlet. 

• An internal variable called “Inlet Specific Heat for Plant Connection N” provides the 
current value for the specific heat of the fluid entering the component, in [J/kg-C]. 
This specific heat is sensitive to the fluid type (e.g. if using glycol in the plant loop) 
and fluid temperature at the inlet. 

For each plant loop connection that is used, the following EMS actuators are created and 
must be used to pass results from the custom model to the rest of EnergyPlus: 

• An actuator called “Plant Connection N” with the control type “Outlet Temperature,” in 
[C], needs to be used.  This is the temperature of the fluid leaving the zone unit 
through that particular plant connection.  
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• An actuator called “Plant Connection N” with the control type “Mass Flow Rate,” in 
kg/s, needs to be used. This actuator registers the component model’s request for 
plant fluid flow.  The actual mass flow rate through the component may be different 
than requested if the overall loop situation is such that not enough flow is available to 
meet all the various requests.  In general, this actuator is used to lodge a request for 
flow, but the more accurate flow rate will be the internal variable called “Inlet Mass 
Flow Rate for Plant Connection N.” 

Water Use 

The user defined zone unit can be connected to the water use models in EnergyPlus that 
allow modeling on-site storage.  If a supply inlet water storage tank is used, then an actuator 
called “Water System” with the control type “Supplied Volume Flow Rate,” in m3/s, needs to 
be used.  This sets up the zone unit as a demand component for that storage tank.  If a 
collection outlet water storage tank is used, then an actuator called “Water System” with the 
control type “Collected Volume Flow Rate,” in m3/s, needs to be used.  

Ambient Zone 

The user defined zone unit can be connected to an ambient zone and provide internal gains 
to that zone.  The zone can be different than the one that unit is connected to via the primary 
air connection if desired.  This is for “skin losses” that the unit might have that result from 
inefficiencies and other non-ideal behavior.  When an ambient zone is specified, the following 
actuators are created that can be used for different types of internal gains to the named zone: 

• An actuator called “Component Zone Internal Gain” with the control type “Sensible 
Heat Gain Rate,” in [W], is available.  This can be used for purely convective sensible 
heat gains (or losses) to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Return Air 
Heat Gain Rate,” in [W], is available.  This can be used for purely convective sensible 
heat gains (or losses) to the return air duct for a zone.   

• An actuator called “Component Zone Internal Gain” with the control type “Thermal 
Radiation Heat Gain Rate,” in [W], is available.  This can be used for thermal 
radiation gains (or losses) to a zone. 

• An actuator called “Component Zone Internal Gain” with the control type “Latent Heat 
Gain Rate,’ in [W], is available.  This can be used for latent moisture gains (or losses) 
to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Return Air 
Latent Heat Gain Rate,” in [W], is available.  This can be used for latent moisture 
gains (or losses) to a the return air duct for a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Carbon 
Dioxide Gain Rate,” in [m3/s], is available.  This can be used for carbon dioxide gains 
(or losses) to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Gaseous 
Contaminant Gain Rate,” in [m3/s], is available.  This can be used for generic 
gaseous air pollutant gains (or losses) to a zone.  

Air Terminal Unit 

The input object called AirTerminal:SingleDuct:UserDefined provides a shell for creating 
custom models for an air terminal that connects a multi-zone air handler to a thermal zone.  
This device is analogous to the single-duct terminal units in the Group – Air Distribution 
Equipment, such as AirTerminal:SingleDuct:VAV:Reheat or 
AirTerminal:SingleDuct:ConstantVolume:FourPipeInduction. 
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In addition to the primary air connection that connects from the air loop to the zone, there are 
options for additional connections to a second air stream (e.g. for outdoor ventilation or heat 
source or sink), up to two separate plant loop connections (e.g. hot water and chilled water), 
a water supply tank, a water collection tank, and a separate zone for skin losses. 
The air terminal unit is a associated with a thermal zone (by the 
ZoneHVAC:EquipmentConnections, ZoneHVAC:EquipmentList, and 
ZoneHVAC:AirDistributionUnit objects).  In EnergyPlus, when there are controlled thermal 
zones with thermostat (and humidistat) controls, the central routines predict the loads that 
zone equipment need to meet in order to maintain control of the zone conditions.  When there 
are multiple types of equipment serving a zone, they are sequenced to meet heating or 
cooling loads in a particular order.  Rather than the total predicted load, the second or third 
devices need to know the load that remains after the earlier-sequenced devices have already 
operated on the zone.  The following internal variables are useful inputs for controlling zone 
equipment in your models: 

• An internal variable called “Remaining Sensible Load to Heating Setpoint” provides 
the current value for the sensible load, in [W], that remains for this device that if 
delivered will allow the zone to reach the heating setpoint under current conditions. 

• An internal variable called “Remaining Sensible Load to Cooling Setpoint” provides 
the current value for the sensible load, in [W], that remains for this device that if 
delivered will allow the zone to reach the cooling setpoint under current conditions. 

• An internal variable called “Remaining Latent Load to Humidifying Setpoint” provides 
the current value for the latent load, in [kg/s], that remains for this device that if 
delivered will allow the zone to reach the humidification setpoint under current 
conditions. 

• An internal variable called “Remaining Latent Load to Dehumidifying Setpoint” 
provides the current value for the latent load, in [kg/s], that remains for this device 
that if delivered will allow the zone to reach the dehumidification setpoint under 
current conditions.  

Primary Air Connection 

The primary air connection includes both an inlet and an outlet that are required to be used 
when using this component.  This called the primary air connection because it is how the 
terminal unit is connected from the air handle to the zone.  The inlet to the custom air terminal 
unit is a node that is also the outlet from an AirLoopHVAC:ZoneSplitter object.  The following 
EMS internal variables are made available for this inlet node and should be useful inputs to 
your own custom models: 

• An internal variable called “Inlet Temperature for Primary Air Connection,” provides 
the current value for the drybulb air temperature at the component’s inlet node, in [C]. 

• An internal variable called “Inlet Humidity Ratio for Primary Air Connection,” provides 
the current value for the moist air humidity ratio at the component’s inlet node, in [kg-
H2O/kg-dryAir] 

• An internal variable called “Inlet Density for Primary Air Connection,” provides the 
current value for the density of moist air at the component’s main inlet node, in 
[kg/m3]. 

• An internal variable called “Inlet Specific Heat for Primary Air Connection,” provides 
the current value for the specific heat of moist air at the component’s main inlet node, 
in [J/kg-C]. 

The inlet node also has an actuator associated with it so that the rate of air flow leaving the 
thermal zone and entering the unit can be passed to the rest of EnergyPlus. 

• An actuator called “Primary Air Connection,” with the control type “Inlet Mass Flow 
Rate,” in [kg/s], needs to be used.  This will set the flow rate of air leaving the zone 
splitter and entering the air terminal unit.  
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The primary outlet for the custom air terminal unit is a node that is also an inlet to the zone.  
The following EMS actuators are created for this outlet node and must be used to pass 
results from the custom model to the rest of EnergyPlus: 

• An actuator called “Primary Air Connection,” with the control type “Outlet 
Temperature,” in [C], needs to be used.  This will set the drybulb temperature of the 
air leaving the air terminal unit and entering the zone through the zone air inlet node. 

• An actuator called “Primary Air Connection,” with the control type “Outlet Humidity 
Ratio,” in [kg-H2O/kg-dryAir], needs to be used.  This will set the humidity ratio of the 
air leaving the air terminal unit and entering the zone through the zone air inlet node. 

• An actuator called “Primary Air Connection,” with the control type “Outlet Mass Flow 
Rate,” in [kg/s], needs to be used.  This will set the flow rate of air leaving the air 
terminal unit and entering the zone through the zone air inlet node. 

It is not required that the primary air connections inlet and outlet mass flow rates be identical.  
However, if there is an imbalance, then the model should use the secondary air connection to 
balance air mass flows.  

Secondary Air Connection 

The secondary air connection provides options for an added inlet node, or outlet node, or 
both depending on the user’s needs.  This separate air stream can be used for outdoor air 
ventilation or as a source or sink for energy.  The secondary air inlet node will often be 
defined to be an outdoor air node (ref. OutdoorAir:Node) but that is not required.  The 
secondary air outlet node can be used as relief exhaust when the unit is providing outdoor air 
ventilation.  If the secondary air outlet is not really connected to anything else and just 
releases air to the outdoors, then it isn’t necessary that moist air properties be set using 
actuators because they will not impact anything else in the model. 
If the secondary air connection inlet node is used, then the following internal variables and 
actuator are made available: 

• An internal variable called “Inlet Temperature for Secondary Air Connection,” 
provides the current value for the drybulb air temperature at the secondary inlet node, 
in [C]. 

• An internal variable called “Inlet Humidity Ratio for Secondary Air Connection,” 
provides the current value for the moist air humidity ratio at the secondary inlet node, 
in [kg-H2O/kg-dryAir] 

• An internal variable called “Inlet Density for Secondary Air Connection,” provides the 
current value for the density of moist air at the secondary inlet node, in [kg/m3]. 

• An internal variable called “Inlet Specific Heat for Secondary Air Connection,” 
provides the current value for the specific heat of moist air at the secondary inlet 
node, in [J/kg-C]. 

• An actuator called “Secondary Air Connection,” with the control type “Inlet Mass Flow 
Rate,” in [kg/s], needs to be used.  This will set the flow rate of air entering the air 
terminal unit through the secondary air connection inlet. 

If the secondary air connection outlet node is used, then the following actuators are created: 
• An actuator called “Secondary Air Connection,” with the control type “Outlet 

Temperature,” in [C], needs to be used.  This will set the drybulb temperature of the 
air leaving the air terminal unit through the secondary air outlet node. 

• An actuator called “Secondary Air Connection,” with the control type “Outlet Humidity 
Ratio,” in [kg-H2O/kg-dryAir], needs to be used.  This will set the humidity ratio of the 
air leaving the air terminal unit through the secondary air outlet node. 

• An actuator called “Secondary Air Connection,” with the control type “Outlet Mass 
Flow Rate,” in [kg/s], needs to be used.  This will set the flow rate of air leaving the air 
terminal unit through the secondary air outlet node. 
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Plant Connections 

The user defined air terminal unit can also be connected to up to two different plants to 
provide hydronic-based cooling, heating, or heat source or rejection.   
Although the air terminal unit actively conditions the zone, from the point of view of plant they 
are demand components.  These plant connections are always “demand” in the sense that 
the air terminal unit will place loads onto the plant loops serving it and are not configured to 
be able to meet plant loads in the way that supply equipment could (loading mode is always 
DemandsLoad).  These plant connections are always of the type that when flow is requested, 
the loop will be operated to try and meet the flow request and if not already running, these 
flow requests can turn on the loop (loop flow request mode is always 
NeedsFlowAndTurnsLoopOn). 
For plant loops, both the inlet and outlet nodes need to be used for each loop connection.  
The AirTerminal:SingleDuct:UserDefined object appears directly on the Branch object used to 
describe the plant.  The central plant routines require that each plant component be properly 
initialized and registered. Special actuators are provided for these initializations and they 
should be filled with values by the Erl programs that are called by the program calling 
manager assigned to the air terminal unit for model setup and sizing.  The following three 
actuators are created for each of “N” plant loops and must be used to properly register the 
plant connection: 

• An actuator called “Plant Connection N” with the control type “Minimum Mass Flow 
Rate,” in [kg/s], should be used.  This will set the so-called hardware limit for 
component’s minimum mass flow rate when operating.  (If not used, then the limit will 
be set to zero which may be okay for many if not most models.) 

• An actuator called “Plant Connection N” with the control type “Maximum Mass Flow 
Rate,” in [kg/s], needs to be used.  This will set the so-called hardware limit for the 
component’s maximum mass flow rate when operating.  

• An actuator called “Plant Connection N” with the control type “Design Volume Flow 
Rate,” in [m3/s], needs to be used.  This will register the size of the component for 
use in sizing the plant loop and supply equipment that will need to meet the loads. 

For each plant loop connection that is used, the following internal variables are available for 
inputs to the custom component model: 

• An internal variable called “Inlet Temperature for Plant Connection N” provides the 
current value for the temperature of the fluid entering the component, in [C]. 

• An internal variable called “Inlet Mass Flow Rate for Plant Connection N” provides the 
current value for the mass flow rate of the fluid entering the component, in [kg/s]. 

• An internal variable called “Inlet Density for Plant Connection N” provides the current 
value for the density of the fluid entering the component, in [kg/m3].  This density is 
sensitive to the fluid type (e.g. if using glycol in the plant loop) and fluid temperature 
at the inlet. 

• An internal variable called “Inlet Specific Heat for Plant Connection N” provides the 
current value for the specific heat of the fluid entering the component, in [J/kg-C]. 
This specific heat is sensitive to the fluid type (e.g. if using glycol in the plant loop) 
and fluid temperature at the inlet. 

For each plant loop connection that is used, the following EMS actuators are created and 
must be used to pass results from the custom model to the rest of EnergyPlus: 

• An actuator called “Plant Connection N” with the control type “Outlet Temperature,” in 
[C], needs to be used.  This is the temperature of the fluid leaving the air terminal unit 
through that particular plant connection.  

• An actuator called “Plant Connection N” with the control type “Mass Flow Rate,” in 
kg/s, needs to be used. This actuator registers the component model’s request for 
plant fluid flow.  The actual mass flow rate through the component may be different 
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than requested if the overall loop situation is such that not enough flow is available to 
meet all the various requests.  In general, this actuator is used to lodge a request for 
flow, but the more accurate flow rate will be the internal variable called “Inlet Mass 
Flow Rate for Plant Connection N.” 

Water Use 

The user defined air terminal unit can be connected to the water use models in EnergyPlus 
that allow modeling on-site storage.  If a supply inlet water storage tank is used, then an 
actuator called “Water System” with the control type “Supplied Volume Flow Rate,” in m3/s, 
needs to be used.  This sets up the air terminal unit as a demand component for that storage 
tank.  If a collection outlet water storage tank is used, then an actuator called “Water System” 
with the control type “Collected Volume Flow Rate,” in m3/s, needs to be used.  

Ambient Zone 

The user defined air terminal unit can be connected to an ambient zone and provide internal 
gains to that zone.  The zone can be different than the one that unit is connected to via the 
primary air connection if desired.  This is for “skin losses” that the unit might have that result 
from inefficiencies and other non-ideal behavior.  When an ambient zone is specified, the 
following actuators are created that can be used for different types of internal gains to the 
named zone: 

• An actuator called “Component Zone Internal Gain” with the control type “Sensible 
Heat Gain Rate,” in [W], is available.  This can be used for purely convective sensible 
heat gains (or losses) to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Return Air 
Heat Gain Rate,” in [W], is available.  This can be used for purely convective sensible 
heat gains (or losses) to the return air duct for a zone.   

• An actuator called “Component Zone Internal Gain” with the control type “Thermal 
Radiation Heat Gain Rate,” in [W], is available.  This can be used for thermal 
radiation gains (or losses) to a zone. 

• An actuator called “Component Zone Internal Gain” with the control type “Latent Heat 
Gain Rate,’ in [W], is available.  This can be used for latent moisture gains (or losses) 
to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Return Air 
Latent Heat Gain Rate,” in [W], is available.  This can be used for latent moisture 
gains (or losses) to a the return air duct for a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Carbon 
Dioxide Gain Rate,” in [m3/s], is available.  This can be used for carbon dioxide gains 
(or losses) to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Gaseous 
Contaminant Gain Rate,” in [m3/s], is available.  This can be used for generic 
gaseous air pollutant gains (or losses) to a zone.  

 

Air Coil 

The input object called Coil:UserDefined provides a shell for creating custom models for a 
coil that processes air as part of an air handler.  This device is analogous to coils models 
such as Coil:Cooling:Water, Coil:Heating:Water, and Coil:Cooling:DX:SingleSpeed, but can 
also be used for heat-exchanger-like devices such as 
HeatExchanger:AirToAir:SensibleAndLatent or EvaporativeCooler:Indirect:WetCoil.  
The user defined coil model can use one or two air connections, one optional plant 
connection, a water supply tank, a water collection tank, and a separate zone for skin losses.   
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Air Connections 

Each of the two air connections that are available include both an inlet and an outlet node 
that are required for each air connection that is used.  The Coil:UserDefined object appears 
directly on a Branch object used to define the supply side of an air handler, or in the 
AirLoopHVAC:OutdoorAirSystem:EquipmentList object used to define outdoor air systems.  
The following EMS internal variables are made available for each inlet node and should be 
useful inputs to your own custom models: 

• An internal variable called “Inlet Temperature for Air Connection N,” provides the 
current value for the drybulb air temperature at the component’s inlet node, in [C]. 

• An internal variable called “Inlet Humidity Ratio for Air Connection N,” provides the 
current value for the moist air humidity ratio at the component’s inlet node, in [kg-
H2O/kg-dryAir] 

• An internal variable called “Inlet Density for Air Connection N,” provides the current 
value for the density of moist air at the component’s main inlet node, in [kg/m3]. 

• An internal variable called “Inlet Specific Heat for Air Connection N,” provides the 
current value for the specific heat of moist air at the component’s main inlet node, in 
[J/kg-C]. 

The following EMS actuators are created for each outlet node and must be used to pass 
results from the custom model to the rest of EnergyPlus: 

• An actuator called “Air Connection N,” with the control type “Outlet Temperature,” in 
[C], needs to be used.  This will set the drybulb temperature of the air leaving the coil. 

• An actuator called “Air Connection N,” with the control type “Outlet Humidity Ratio,” in 
[kg-H2O/kg-dryAir], needs to be used.  This will set the humidity ratio of the air 
leaving the coil. 

• An actuator called “Air Connection N,” with the control type “Outlet Mass Flow Rate,” 
in [kg/s], needs to be used.  This will set the flow rate of air leaving the coil. 

Plant Connections 

The user defined coil can also be connected to one plant loop to provide hydronic-based 
cooling, heating, or heat source or rejection.   
Although the coil actively conditions the air stream passing through it, from the point of view 
of plant it is a demand component.  This plant connection is always “demand” in the sense 
that the coil will place loads onto the plant loop serving it and is not configured to be able to 
meet plant loads in the way that supply equipment could (loading mode is always 
DemandsLoad).  This plant connection is always of the type that when flow is requested, the 
loop will be operated to try and meet the flow request and if not already running, these flow 
requests can turn on the loop (loop flow request mode is always 
NeedsFlowAndTurnsLoopOn). 
Both the inlet and outlet nodes need to be used is a loop is connected.  The Coil:UserDefined 
object appears directly on the Branch object used to describe the plant.  The central plant 
routines require that each plant component be properly initialized and registered. Special 
actuators are provided for these initializations and they should be filled with values by the Erl 
programs that are called by the program calling manager assigned to the coil for model setup 
and sizing.  The following three actuators are created for the plant loop and must be used to 
properly register the plant connection: 

• An actuator called “Plant Connection” with the control type “Minimum Mass Flow 
Rate,” in [kg/s], should be used.  This will set the so-called hardware limit for 
component’s minimum mass flow rate when operating.  (If not used, then the limit will 
be set to zero which may be okay for many if not most models.) 
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• An actuator called “Plant Connection” with the control type “Maximum Mass Flow 
Rate,” in [kg/s], needs to be used.  This will set the so-called hardware limit for the 
component’s maximum mass flow rate when operating.  

• An actuator called “Plant Connection” with the control type “Design Volume Flow 
Rate,” in [m3/s], needs to be used.  This will register the size of the component for 
use in sizing the plant loop and supply equipment that will need to meet the loads. 

When the plant loop connection is used, the following internal variables are available for 
inputs to the custom component model: 

• An internal variable called “Inlet Temperature for Plant Connection” provides the 
current value for the temperature of the fluid entering the component, in [C]. 

• An internal variable called “Inlet Mass Flow Rate for Plant Connection” provides the 
current value for the mass flow rate of the fluid entering the component, in [kg/s]. 

• An internal variable called “Inlet Density for Plant Connection” provides the current 
value for the density of the fluid entering the component, in [kg/m3].  This density is 
sensitive to the fluid type (e.g. if using glycol in the plant loop) and fluid temperature 
at the inlet. 

• An internal variable called “Inlet Specific Heat for Plant Connection” provides the 
current value for the specific heat of the fluid entering the component, in [J/kg-C]. 
This specific heat is sensitive to the fluid type (e.g. if using glycol in the plant loop) 
and fluid temperature at the inlet. 

When the plant loop connection is used, the following EMS actuators are created and must 
be used to pass results from the custom model to the rest of EnergyPlus: 

• An actuator called “Plant Connection” with the control type “Outlet Temperature,” in 
[C], needs to be used.  This is the temperature of the fluid leaving the coil.  

• An actuator called “Plant Connection” with the control type “Mass Flow Rate,” in kg/s, 
needs to be used. This actuator registers the component model’s request for plant 
fluid flow.  The actual mass flow rate through the component may be different than 
requested if the overall loop situation is such that not enough flow is available to 
meet all the various requests.  In general, this actuator is used to lodge a request for 
flow, but the more accurate flow rate will be the internal variable called “Inlet Mass 
Flow Rate for Plant Connection.” 

Water Use 

The user defined coil can be connected to the water use models in EnergyPlus that allow 
modeling on-site storage.  If a supply inlet water storage tank is used, then an actuator called 
“Water System” with the control type “Supplied Volume Flow Rate,” in m3/s, needs to be 
used.  This sets up the coil as a demand component for that storage tank.  If a collection 
outlet water storage tank is used, then an actuator called “Water System” with the control 
type “Collected Volume Flow Rate,” in m3/s, needs to be used.  

Ambient Zone 

The user defined coil can be connected to an ambient zone and provide internal gains to that 
zone.  This is for “skin losses” that the coil might have that result from inefficiencies and other 
non-ideal behavior.  When an ambient zone is specified, the following actuators are created 
that can be used for different types of internal gains to the named zone: 

• An actuator called “Component Zone Internal Gain” with the control type “Sensible 
Heat Gain Rate,” in [W], is available.  This can be used for purely convective sensible 
heat gains (or losses) to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Return Air 
Heat Gain Rate,” in [W], is available.  This can be used for purely convective sensible 
heat gains (or losses) to the return air duct for a zone.   
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• An actuator called “Component Zone Internal Gain” with the control type “Thermal 
Radiation Heat Gain Rate,” in [W], is available.  This can be used for thermal 
radiation gains (or losses) to a zone. 

• An actuator called “Component Zone Internal Gain” with the control type “Latent Heat 
Gain Rate,’ in [W], is available.  This can be used for latent moisture gains (or losses) 
to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Return Air 
Latent Heat Gain Rate,” in [W], is available.  This can be used for latent moisture 
gains (or losses) to a the return air duct for a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Carbon 
Dioxide Gain Rate,” in [m3/s], is available.  This can be used for carbon dioxide gains 
(or losses) to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Gaseous 
Contaminant Gain Rate,” in [m3/s], is available.  This can be used for generic 
gaseous air pollutant gains (or losses) to a zone.  

 

Plant Component 

The input object called PlantComponent:UserDefined provides a shell for creating custom 
models of a device that is part of the plant models used for hydronic-type systems.  This 
object can be used for primary heating or cooling devices, such as boilers or chillers.  
Although the other user-defined component models can also connect to plant, they are 
always simple “demand” components (from the point of view of plant modeling) and their calls 
to simulate are led by the air side portions of the program’s calling tree.  The plant-centric 
component here however, is called to simulate along with other plant components (in flow 
order) by plant’s central routines.   
The user defined plant component can use up to four different plant loop connections, one 
optional air connection, a water supply tank, a water collection tank, and an ambient zone for 
skin losses.  

Plant Connections 

The user defined plant component can be connected to up to four different plant loops.  
For plant loops, both the inlet and outlet nodes need to be used for each loop connection.  
The PlantComponent:UserDefined object appears directly on the Branch object used to 
describe the plant.  The central plant routines require that each plant component be properly 
initialized and registered. Special actuators are provided for these initializations and they 
should be filled with values by the Erl programs that are called by the program calling 
manager assigned to that particular loop connection for model setup and sizing.  The 
following six actuators are created for each of “N” plant loops and must be used to properly 
register the plant connection: 

• An actuator called “Plant Connection N” with the control type “Minimum Mass Flow 
Rate,” in [kg/s], should be used.  This will set the so-called hardware limit for 
component’s minimum mass flow rate when operating.  (If not used, then the limit will 
be set to zero which may be okay for many if not most models.) 

• An actuator called “Plant Connection N” with the control type “Maximum Mass Flow 
Rate,” in [kg/s], needs to be used.  This will set the so-called hardware limit for the 
component’s maximum mass flow rate when operating.  

• An actuator called “Plant Connection N” with the control type “Design Volume Flow 
Rate,” in [m3/s], needs to be used.  This will register the size of the component for 
use in sizing the plant loop and supply equipment that will need to meet the loads. 
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• An actuator called “Plant Connection N” with the control type “Minimum Loading 
Capacity,” in [W], needs to be used if the device is to be used as a supply component 
with load-based operation schemes.  

• An actuator called “Plant connection N” with the control type “Maxium Loading 
Capacity,” in [W], needs to be used if the device is to be used as a supply component 
with load-based operation schemes. 

• An actuator called “Plant Connection N” with the control type “Optimal Loading 
Capacity,” in [W], needs to be used if the device is to be used as a supply component 
with load-based operation schemes. 

For each plant loop connection that is used, the following internal variables are available for 
inputs to the custom component model: 

• An internal variable called “Inlet Temperature for Plant Connection N” provides the 
current value for the temperature of the fluid entering the component, in [C]. 

• An internal variable called “Inlet Mass Flow Rate for Plant Connection N” provides the 
current value for the mass flow rate of the fluid entering the component, in [kg/s]. 

• An internal variable called “Inlet Density for Plant Connection N” provides the current 
value for the density of the fluid entering the component, in [kg/m3].  This density is 
sensitive to the fluid type (e.g. if using glycol in the plant loop) and fluid temperature 
at the inlet. 

• An internal variable called “Inlet Specific Heat for Plant Connection N” provides the 
current value for the specific heat of the fluid entering the component, in [J/kg-C]. 
This specific heat is sensitive to the fluid type (e.g. if using glycol in the plant loop) 
and fluid temperature at the inlet. 

• An internal variable called “Load Request for Plant Connection N” provides the 
current value for the desired operating capacity, in [W].  This is the input for how the 
model is being asked to meet the loads on the supply side.  This is the result of the 
central routines for operation schemes and should be useful for controlling a plant 
model.  (This internal variable is not made available when this plant connection’s 
loading mode is set to DemandsLoad.) 

For each plant loop connection that is used, the following EMS actuators are created and 
must be used to pass results from the custom model to the rest of EnergyPlus: 

• An actuator called “Plant Connection N” with the control type “Outlet Temperature,” in 
[C], needs to be used.  This is the temperature of the fluid leaving the air terminal unit 
through that particular plant connection.  

• An actuator called “Plant Connection N” with the control type “Mass Flow Rate,” in 
kg/s, needs to be used. This actuator registers the component model’s request for 
plant fluid flow.  The actual mass flow rate through the component may be different 
than requested if the overall loop situation is such that not enough flow is available to 
meet all the various requests.  In general, this actuator is used to lodge a request for 
flow, but the more accurate flow rate will be the internal variable called “Inlet Mass 
Flow Rate for Plant Connection N.” 

For each plant loop connection that is used, there is input required to specify the nature of the 
connection with respect to loads.  One of the following choices must be selected depending 
on the purpose of the component model.  

• DemandsLoad. This type of loading is used for plant connections that place a load on 
the loop.  Connections that use this loading scheme are not set up to meet loads and 
interact with the operation schemes.  For example, this loading mode is appropriate 
for the condenser side of a chiller.  

• MeetsLoadWithPassiveCapacity.  This type of loading is used for plant connections 
where the component has some capacity to meet loads but it is not really of the type 
that could be controlled.  For example, a ground heat exchanger is passive because 
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while it can provide some level of heat rejection or source, the amount will vary with 
current conditions and cannot usually be explicitly controlled.  

• MeetsLoadWithNominalCapacity.  This type of loading is used for plant connections 
where the component has controllable capacity to meet loads and no outlet 
temperature restrictions.   

• MeetsLoadWithNominalCapacityLowOutLimit.  This type of loading is used for plant 
connections where the component has controllable capacity to meet loads but with a 
lower limit on the fluid temperature at the outlet node.  For example, this can be used 
for a chiller evaporator connection when the chiller is prevented from producing 
chilled water below a certain temperature limit.  When this type of loading is selected, 
an actuator is created to allow setting the low temperature limit for use by the load 
dispatch routines.  The actuator is called “Plant Connection N” with the control type 
“Low Outlet Temperature Limit,” in [C], and needs to be used. 

• MeetsLoadWithNominalCapacityHiOutLimit.  This type of loading is used for plant 
connections where the component has controllable capacity to meet loads but with 
an upper limit on the fluid temperature at the outlet node.  For example, this can be 
used for a boiler connection when the boiler is prevented from producing hot water 
above a certain temperature limit.  When this type of loading is selected, an actuator 
is created to allow setting the high temperature limit for use by the load dispatch 
routines.  The actuator is called “Plant Connection N” with the control type “High 
Outlet Temperature Limit,” in [C], and needs to be used.  

For each plant loop connection, there is input required for the nature of the flow requests 
made by the component with respect to determining the overall flow for the loop.  Mass flow 
request are also important for resolving the flow rates in parallel branches, but the mode here 
is related to the problem of determining the overall flow rate for the loop, not the flow down 
one particular branch.  The overall loop flow rate is a function of all the flow requests made by 
the different devices on the loop and different types of devices have different implications for 
the overall loop rate.  One of the following three choices must be made depending on the 
nature of the plant component. 

• NeedsFlowIfLoopOn.  Devices with this flow request mode will contribute to the 
overall loop flow rate but will not initiate flow themselves.  Other devices on the plant 
loop (of type NeedsFlowAndTurnsLoopOn ) need to make flow requests to get the 
loop flowing at all, but once it is flowing, this device can affect the overall loop flow 
rate.  For example, a chiller may have a lower limit on the allowable chilled water flow 
rate through its evaporator and if that lower limit is higher than the current request for 
chilled water by the cooling coils, then the overall loop flow will be that needed by the 
chiller rather than the coils.   

• NeedsFlowAndTurnsLoopOn.  Devices with this flow request mode will contribute to 
the overall loop flow rate and initiate flow themselves.  This mode is used for demand 
component such as coils.  Devices with this mode will initiate loops to turn on and 
start moving fluid.   

• ReceivesWhateverFlowAvailable.  Devices with this flow request mode will not 
contribute to the overall loop flow rate and do not initiate flow themselves.  These are 
essentially passive devices that take whatever flow is sent to them, such as a ground 
heat exchanger. 

Separate program calling managers are available for each plant loop connection.  The user 
defined plant component is called to simulate by the central plant routines (whereas the other 
user defined components are called by the central HVAC routines).  The calls to simulate are 
made for each connection and you may want or need to perform different model calculations 
depending on which plant loop connection is being simulated at the time.  There is an Erl 
program calling manager for initialization, setup, and sizing that needs to be used for each 
plant connection and is only called during the early plant loop initialization phase.  There is 
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also an Erl program calling manager for the model calculations to perform for each plant 
connection.  

Air Connection 

An air connection is available that includes both an inlet and an outlet node.  This can be 
used for air source or heat rejections. The following EMS internal variables are made 
available for the inlet node, if it is used, and should be useful inputs to your own custom 
models: 

• An internal variable called “Inlet Temperature for Air Connection,” provides the 
current value for the drybulb air temperature at the component’s inlet node, in [C]. 

• An internal variable called “Inlet Mass Flow Rate for Air Connection,” provides the 
current value for the mass flow rate of air at the component’s inlet node, in [kg/s]. 

• An internal variable called “Inlet Humidity Ratio for Air Connection,” provides the 
current value for the moist air humidity ratio at the component’s inlet node, in [kg-
H2O/kg-dryAir] 

• An internal variable called “Inlet Density for Air Connection,” provides the current 
value for the density of moist air at the component’s main inlet node, in [kg/m3]. 

• An internal variable called “Inlet Specific Heat for Air Connection,” provides the 
current value for the specific heat of moist air at the component’s main inlet node, in 
[J/kg-C]. 

The following EMS actuators are created for the outlet air node, if it is used, and must be 
used to pass results from the custom model to the rest of EnergyPlus: 

• An actuator called “Air Connection,” with the control type “Outlet Temperature,” in [C], 
needs to be used.  This will set the drybulb temperature of the air leaving the 
component. 

• An actuator called “Air Connection,” with the control type “Outlet Humidity Ratio,” in 
[kg-H2O/kg-dryAir], needs to be used.  This will set the humidity ratio of the air 
leaving the component. 

• An actuator called “Air Connection,” with the control type “Outlet Mass Flow Rate,” in 
[kg/s], needs to be used.  This will set the flow rate of air leaving the component. 

Water Use 

The user defined plant component can be connected to the water use models in EnergyPlus 
that allow modeling on-site storage.  If a supply inlet water storage tank is used, then an 
actuator called “Water System” with the control type “Supplied Volume Flow Rate,” in m3/s, 
needs to be used.  This sets up the plant component as a demand component for that 
storage tank.  If a collection outlet water storage tank is used, then an actuator called “Water 
System” with the control type “Collected Volume Flow Rate,” in m3/s, needs to be used.  

Ambient Zone 

The user defined plant component can be connected to an ambient zone and provide internal 
gains to that zone.  This is for “skin losses” that the component might have that result from 
inefficiencies and other non-ideal behavior.  When an ambient zone is specified, the following 
actuators are created that can be used for different types of internal gains to the named zone: 

• An actuator called “Component Zone Internal Gain” with the control type “Sensible 
Heat Gain Rate,” in [W], is available.  This can be used for purely convective sensible 
heat gains (or losses) to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Return Air 
Heat Gain Rate,” in [W], is available.  This can be used for purely convective sensible 
heat gains (or losses) to the return air duct for a zone.   
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• An actuator called “Component Zone Internal Gain” with the control type “Thermal 
Radiation Heat Gain Rate,” in [W], is available.  This can be used for thermal 
radiation gains (or losses) to a zone. 

• An actuator called “Component Zone Internal Gain” with the control type “Latent Heat 
Gain Rate,’ in [W], is available.  This can be used for latent moisture gains (or losses) 
to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Return Air 
Latent Heat Gain Rate,” in [W], is available.  This can be used for latent moisture 
gains (or losses) to a the return air duct for a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Carbon 
Dioxide Gain Rate,” in [m3/s], is available.  This can be used for carbon dioxide gains 
(or losses) to a zone.  

• An actuator called “Component Zone Internal Gain” with the control type “Gaseous 
Contaminant Gain Rate,” in [m3/s], is available.  This can be used for generic 
gaseous air pollutant gains (or losses) to a zone.  
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EMS Examples 

This section provides examples that demonstrate how to use the EMS. Each example 
provides a problem statement, discusses how to approach a solution using EMS, and 
provides example EMS input objects. For each example a complete input data file is provided 
with the EnergyPlus release (you can find this in the ExampleFiles\ directory).  

A range of example applications is presented here. Each is presented in isolation for 
simplicity, but a much more comprehensive approach to EMS programs is also possible.  

Example 1. Whole-Building Average Zone Air Temperature 

Problem Statement 

Although EnergyPlus can report an enormous number of output variables, you may want a 
custom report variable such as one for the average temperature in the building. Only zone-
by-zone indoor air temperatures are available. Because it is nearly always important to check 
that models are properly controlling zone air conditions, you may need to examine air 
temperature results from your models. Compared to scanning across the many zones in a 
large building, you could save time when checking a model if you have a single value for a 
whole-building average temperature. Of course, you could calculate such a value after a run 
by postprocessing, but redoing this for every run is cumbersome and time consuming. 
Therefore, it would be more convenient to automatically calculate such a value inside the 
program and output it in the usual manner. For example, if we take the example file called 
“BenchmarkSmallOfficeNew_USA_IL_CHICAGO-OHARE.idf,” is there a way to create a 
custom report variable that provides a weighted average for the indoor temperature of all the 
occupied zones in a model?  

EMS Design Discussion 

This is a fairly simple example in that the EMS controls nothing. There are no actuators.  

The example file has six zones, but one is an attic that we do not care about. Therefore, the 
main inputs, or EMS sensors, will be the zone air temperatures for the five occupied zones. 
We will use EnergyManagementSystem:Sensor objects to obtain the values for the air 
temperatures by mapping to the output variable called “Zone Mean Air Temperature.”   

A model for average temperature can be constructed by using the zone air volumes as 
weights so larger zones have more influence than smaller zones on the resulting average. 
The model equation we will implement in EMS for our new report variable is 

( )
( )

zone zone
average

zone

T Vol
T

Vol
∗

= ∑
∑  

The example file specifies the zone volume in its zone objects so we have the data needed 
for the weighting factors from elsewhere in the IDF. However, a study could vary the 
geometry such that the volumes differ from one simulation to another. Zone Air Volume is 
available as internal data, so we will use EnergyManagementSystem:InternalVariable input 
objects to assign these weighting factors into global Erl variables. If we did not know 
beforehand that Zone Air Volume was an available internal variable, we would have had to 
prerun the model with some EMS-related objects and the appropriate level of reporting 
selected in an Output:EnergyManagementSystem object, and then studied the EDD output 
file. Note that the EDD file is only produced if you have EMS/Erl programs in your input file. 
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The custom output variable will be defined by using an 
EnergyManagementSystem:OutputVariable input object. This requires the Erl variable to be 
global, so we need to declare a variable. Let’s call it AverageBuildingTemp, to be global using 
an EnergyManagementSystem:GlobalVariable object so we have a way to connect the result 
calculated in the Erl program to the custom output. 

There are two main considerations when selecting an EMS calling point:   

• The call should be toward the end of the zone timestep so the zone air temperature 
calculations are finalized.  

• The call should be before reporting updates so our new value is available before the 
reporting is finalized.  

We therefore choose the EMS calling point with the key of 
“EndOfZoneTimestepBeforeReporting.”  

EMS Input Objects  

A set of input objects to solve this problem appears below and is included in the example file 
called “EMSCustomOutputVariable.idf.”  
 
EnergyManagementSystem:Sensor, 
   T1, !Name 
   Perimeter_ZN_1 ,! Output:Variable or Output:Meter Index Key Name    
   Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name 
 
 EnergyManagementSystem:Sensor, 
   T2, !Name 
   Perimeter_ZN_2 , ! Output:Variable or Output:Meter Index Key Name     
   Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name 
 
 EnergyManagementSystem:Sensor, 
   T3, !Name 
   Perimeter_ZN_3 , ! Output:Variable or Output:Meter Index Key Name     
   Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name 
 
 EnergyManagementSystem:Sensor, 
   T4, !Name 
   Perimeter_ZN_4, ! Output:Variable or Output:Meter Index Key Name    
   Zone Mean Air Temperature ;! Output:Variable or Output:Meter Name 
  
 EnergyManagementSystem:Sensor, 
   T5, !Name 
   Core_ZN , ! Output:Variable or Output:Meter Index Key Name        
   Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name 
 
 EnergyManagementSystem:ProgramCallingManager, 
   Average Building Temperature , ! Name 
   EndOfZoneTimestepBeforeZoneReporting , ! EnergyPlus Model Calling Point 
   AverageZoneTemps ; ! Program Name 1 
  
 EnergyManagementSystem:GlobalVariable,  
   AverageBuildingTemp; 
  
 EnergyManagementSystem:OutputVariable, 
   Weighted Average Building Zone Air Temperature [C], ! Name 
   AverageBuildingTemp, ! EMS Variable Name 
   Averaged, ! Type of Data in Variable 
   ZoneTimeStep ; ! Update Frequency 
 
 EnergyManagementSystem:InternalVariable, 
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   Zn1vol, 
   Perimeter_ZN_1, 
   Zone Air Volume; 
    
 EnergyManagementSystem:InternalVariable, 
   Zn2vol, 
   Perimeter_ZN_2, 
   Zone Air Volume;    
 
 EnergyManagementSystem:InternalVariable, 
   Zn3vol, 
   Perimeter_ZN_3, 
   Zone Air Volume;   
 
 EnergyManagementSystem:InternalVariable, 
   Zn4vol, 
   Perimeter_ZN_4, 
   Zone Air Volume;   
         
 EnergyManagementSystem:InternalVariable, 
   Zn5vol, 
   Core_ZN , 
   Zone Air Volume;   
                 
 EnergyManagementSystem:Program, 
   AverageZoneTemps , ! Name 
   SET SumNumerator = T1*Zn1vol + T2*Zn2vol + T3*Zn3vol + T4*Zn4vol + 
T5*Zn5vol, 
   SET SumDenominator = Zn1vol + Zn2vol + Zn3vol + Zn4vol + Zn5vol, 
   SET AverageBuildingTemp = SumNumerator / SumDenominator; 
     
 Output:EnergyManagementSystem,  
   Verbose, 
   Verbose, 
   Verbose; 
     
 Output:Variable, 
   *,                       !- Key Value 
   Weighted Average Building Zone Air Temperature,  !- Variable Name 
   timestep;                  !- Reporting Frequency 

 

Example 2. Traditional Setpoint and Availability Managers 

Problem Statement 

The traditional way of modeling supervisory control of HVAC systems in EnergyPlus is to use 
SetpointManagers and AvailabilityManagers. To gain experience with EMS, we should ask, Is 
there a way to take a model such as the Benchmark Large Office and replicate the traditional 
HVAC managers by using only the EMS? 

EMS Design Discussion 

A review of the example file shows that three types of traditional HVAC managers are being 
used:  scheduled setpoints, mixed air setpoints, and night cycle availability. We will discuss 
these separately.  

The input object SetpointManager:Scheduled functions by placing a setpoint value on a 
specified node based on the value in a schedule. Therefore, our EMS program will do the 
same. First we will need to access the schedule. In this example, a schedule called 
Seasonal-Reset-Supply-Air-Temp-Sch contains the temperature values desired for the air 
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system’s supply deck. We use an EnergyManagementSystem:Sensor object based on the 
output variable called “Schedule Value” to fill schedule values into an Erl variable called 
Seasonal_Reset_SAT_Sched. Once we have the sensor and actuator setup, putting the 
setpoint on the node involves a single line of Erl code, “SET VAV_1_SAT_setpoint = 
Seasonal_Reset_SAT_Sched.”  

The input object SetpointManager:Mixed air functions by placing a setpoint value on a 
specified node based on the value of the setpoint at another node and the temperature rise 
across the fan. The temperature rise is found by taking the temperature at the fan outlet node 
and subtracting the temperature at the fan inlet node. The EMS needs two additional sensors 
to obtain these temperatures, which are set up by using a pair 
EnergyManagementSystem:Sensor objects. The example file has three mixed air setpoint 
managers that place setpoints on the outlet of the outdoor air mixer, the outlet of the cooling 
coil, and the outlet of the heating coil. Therefore, we need three actuators to place setpoints 
at these three nodes, which are set up using three EnergyManagementSystem:Actuator 
objects. Each mixed air setpoint calculation is a simple single-line of program code such as 
“SET VAV_1_CoolC_Setpoint = Seasonal_Reset_SAT_Sched - (T_VAV1FanOut - 
T_VAV1FanIn).”   

The input object AvailabilityManager:NightCycle functions by monitoring zone temperature 
and starting up the air system (if needed) to keep the building within the thermostat range. 
The sensors here are the zone air temperatures, which are set up by using 
EnergyManagementSystem:Sensor objects in the same way as for Example 1. We will need 
one zone temperature sensor for each zone that is served by the air system so we can 
emulate the “CycleOnAny” model being used. The other sensors we need are the desired 
zone temperatures used by the thermostat. We access these temperatures directly from the 
schedules (HTGSETP_SCH and CLGSETP_SCH in the example) by using 
EnergyManagementSystem:Sensor objects. To control the air system’s operation status, we 
use an EnergyManagementSystem:Actuator object that is assigned to an “AirLoopHVAC” 
component type using the control variable called “Availability Status.”  EnergyPlus recognizes 
four availability states that control the behavior of the air system. Inside EnergyPlus these are 
integers, but EMS has only real-valued variables, so we will use the following whole numbers:  

 NoAction = 0.0 
 ForceOff = 1.0 
 CycleOn = 2.0 
 CycleOnZoneFansOnly = 3.0.  

The traditional AvailabilityManager:NightCycle object operates by turning on the system for a 
prescribed amount of time (1800 seconds in the example file), and then turning it off for the 
same amount of time. You should be able to model this starting and stopping in EMS by 
using Trend variables to record the history of the actions. However, this cycling is not 
necessarily how real buildings are operated, and for this example we do not try to precisely 
emulate the traditional EnergyPlus night cycle manager. Rather, we use a simpler 
temperature-based control to start and stop the air system for the night cycle. The algorithm 
first assumes an offset tolerance of 0.83°C and calculates limits for when heating should turn 
on and off and when cooling should turn on and off. It then finds the maximum and minimum 
zone temperatures for all the zones attached to the air system. These use the @Max and 
@Min built-in functions, which take on two operators at a time. Then a series of logic 
statements is used to compare temperatures and decide what the availability status of the air 
system should be.  

EMS Input Objects  

EMS examples are provided for the three types of traditional HVAC managers. The full set to 
run with no traditional managers is provided in the example file 
“EMSReplaceTraditionalManagers_LargeOffice.idf.”   
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Example input objects that replicate a scheduled setpoint manager using EMS follow.  
EnergyManagementSystem:Sensor, 
   Seasonal_Reset_SAT_Sched, !Name 
   Seasonal-Reset-Supply-Air-Temp-Sch , ! Output:Variable Index Key Name     
   Schedule Value;   ! Output:Variable or Output:Meter Name 
 
EnergyManagementSystem:Actuator, 
   VAV_1_SAT_setpoint,                ! Name 
   VAV_1 Supply Equipment Outlet Node,      ! Component Name    
   System Node Setpoint,              ! Component Type 
   Temperature Setpoint;              ! Control Variable 
 
EnergyManagementSystem:Program, 
   VAV_1_SchedSetpoint , ! Name 
   SET VAV_1_SAT_setpoint = Seasonal_Reset_SAT_Sched; 

 
Example input objects that replicate a mixed air setpoint manager using EMS follow.  
EnergyManagementSystem:Sensor, 
   T_VAV1FanIn, !Name 
   VAV_1_HeatC-VAV_1_FanNode , ! Output:Variable or Output:Meter Index Key 
Name      
   System Node Temp ; ! Output:Variable or Output:Meter Name 
 
EnergyManagementSystem:Sensor, 
   T_VAV1FanOut, !Name 
   VAV_1 Supply Equipment Outlet Node, ! Output:Variable or Output:Meter 
Index Key Name      
   System Node Temp ; ! Output:Variable or Output:Meter Name 
 
EnergyManagementSystem:Actuator, 
   VAV_1_CoolC_Setpoint,            ! Name 
   VAV_1_CoolC-VAV_1_HeatCNode ,    ! Component Name    
   System Node Setpoint,            ! Component Type 
   Temperature Setpoint;            ! Control Variable 
 
EnergyManagementSystem:Actuator, 
   VAV_1_HeatC_Setpoint,                            ! Name 
   VAV_1_HeatC-VAV_1_FanNode ,                  ! Component Name    
   System Node Setpoint,                          ! Component Type 
   Temperature Setpoint;            ! Control Variable 
 
EnergyManagementSystem:Actuator, 
   VAV_1_OA_Setpoint,                            ! Name 
   VAV_1_OA-VAV_1_CoolCNode ,                  ! Component Name   
   System Node Setpoint,                          ! Component Type 
   Temperature Setpoint;            ! Control Variable 
 
EnergyManagementSystem:Program, 
   VAV1MixedAirManagers , ! Name 
   SET VAV_1_CoolC_Setpoint = Seasonal_Reset_SAT_Sched - ( T_VAV1FanOut - 
T_VAV1FanIn), 
   SET VAV_1_HeatC_Setpoint = Seasonal_Reset_SAT_Sched - ( T_VAV1FanOut - 
T_VAV1FanIn), 
   SET VAV_1_OA_Setpoint = Seasonal_Reset_SAT_Sched - ( T_VAV1FanOut - 
T_VAV1FanIn); 

 
Example input objects for a night cycle availability manager follow.  
EnergyManagementSystem:Actuator, 
  VAV_1_NightCycleStatus,   ! Name 
  VAV_1,                    ! Component Name   
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  AirLoopHVAC,              ! Component Type 
  Availability Status;      ! Control Variable 
 

 
EnergyManagementSystem:Sensor, 
  heating_setpoint,                  ! Name 
  HTGSETP_SCH ,         ! Output:Variable or Output:Meter Index Key Name        
  Schedule Value ; ! Output:Variable or Output:Meter Name 
 
EnergyManagementSystem:Sensor, 
  cooling_setpoint,                  ! Name 
  CLGSETP_SCH ,         ! Output:Variable or Output:Meter Index Key Name        
  Schedule Value ; ! Output:Variable or Output:Meter Name 
 
EnergyManagementSystem:Sensor, 
  TzoneVAV1_1,                  ! Name 
  Core_bottom ,         ! Output:Variable or Output:Meter Index Key Name        
  Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name 
 
EnergyManagementSystem:Sensor, 
  TzoneVAV1_2,                  ! Name 
  Perimeter_bot_ZN_3 ,         ! Output:Variable or Output:Meter Index Key 
Name        
  Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name 
 
EnergyManagementSystem:Sensor, 
  TzoneVAV1_3,                  ! Name 
  Perimeter_bot_ZN_2 ,         ! Output:Variable or Output:Meter Index Key 
Name        
  Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name 
 
EnergyManagementSystem:Sensor, 
  TzoneVAV1_4,                  ! Name 
  Perimeter_bot_ZN_1 ,         ! Output:Variable or Output:Meter Index Key 
Name        
  Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name 
 
EnergyManagementSystem:Sensor, 
  TzoneVAV1_5,                  ! Name 
  Perimeter_bot_ZN_4 ,         ! Output:Variable or Output:Meter Index Key 
Name        
  Zone Mean Air Temperature ; ! Output:Variable or Output:Meter Name 
 
EnergyManagementSystem:Program, 
   VAV_1_NightCycleMGR , ! Name 
   SET Toffset = 0.8333  ,  ! 1.5F 
   SET NoAction = 0.0 , 
   SET ForceOff = 1.0 , 
   SET CycleOn = 2.0 , 
   SET CycleOnZoneFansOnly = 3.0 , 
   SET VAV1_heating_TurnOn  = heating_setpoint - Toffset , 
   SET VAV1_heating_TurnOff = heating_setpoint + Toffset ,   
   SET VAV1_cooling_TurnOn  = cooling_setpoint + Toffset ,   
   SET VAV1_cooling_TurnOff = cooling_setpoint - Toffset ,   
   ! find max and min for "cycleOnAny" operation 
   SET Tmin = @MIN TzoneVAV1_1 TzoneVAV1_2  , 
   SET Tmin = @MIN Tmin        TzoneVAV1_3  , 
   SET Tmin = @MIN Tmin        TzoneVAV1_4  ,    
   SET Tmin = @MIN Tmin        TzoneVAV1_5  ,  
   SET Tmax = @MAX TzoneVAV1_1 TzoneVAV1_2  , 
   SET Tmax = @MAX Tmax        TzoneVAV1_3  , 
   SET Tmax = @MAX Tmax        TzoneVAV1_4  ,    



EMS Examples Example 3. Hygro-thermal Window Opening Control for Airflow Network 
 

9/27/12 61  
 

   SET Tmax = @MAX Tmax        TzoneVAV1_5  ,     
   IF Tmin < VAV1_heating_TurnOn , 
     SET VAV_1_NightCycleStatus = CycleOn, 
     RETURN,  ! need to exit early or cooling check could also trigger 
   ELSEIF Tmin > VAV1_heating_TurnOff, 
     SET VAV_1_NightCycleStatus = NoAction, 
   ENDIF, 
   IF Tmax > VAV1_cooling_TurnOn, 
     SET VAV_1_NightCycleStatus = CycleOn, 
   ELSEIF Tmax < VAV1_cooling_TurnOff, 
     SET VAV_1_NightCycleStatus = NoAction   , 
   ENDIF; 

 

Example 3. Hygro-thermal Window Opening Control for Airflow Network 

Problem Statement 

A user of EnergyPlus version 3.1 posted the following question on the Yahoo! list (circa 
spring 2009):  

I am currently trying to model a simple ventilation system based on an  
exhaust fan and outdoor air variable aperture paths that open according to  
the indoor relative humidity. 
As I didn't find any object to directly do this, I am trying to use an  
AirflowNetwork: MultiZone: Component: DetailedOpening object and its  
AirflowNetwork: multizone: Surface object to model the variable aperture. But  
the Ventilation Control Mode of the surface object can only be done via  
Temperature or Enthalpy controls (or other not interesting for my purpose),  
and not via humidity. 
So my questions are: 
1- is it possible to make the surface object variable according to the  
relative humidity? (maybe adapting the program?) 
2- or is there an other way to make it? 

Because the traditional EnergyPlus controls for window openings do not support humidity-
based controls (or did not as of Version 3.1), the correct response to Question #1 was “No.”  
But with the EMS, we can now answer Question #2 as “Yes.”  How can we take the example 
file called HybridVentilationControl.idf and implement humidity-based control for a detailed 
opening in the airflow network model? 

EMS Design Discussion 

The main EMS sensor will be the zone air humidity, so we use an 
EnergyManagementSystem:Sensor object that maps to the output variable called System 
Node Relative Humidity for the zone’s air node. This zone has the detailed opening.  

The EMS will actuate the opening in an airflow network that is defined by the input object 
AirflowNetwork:MultiZone:Component:DetailedOpening. The program will setup the actuator 
for this internally, but we need to use an EnergyManagementSystem:Actuator object to 
declare that we want to use the actuator and provide the variable name we want for the Erl 
programs.  

Because we do not know the exactly what the user had in mind, for this example we assume 
that the desired behavior for the opening area is that the opening should vary linearly with 
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room air relative humidity. When the humidity increases, we want the opening to be larger. 
When the humidity decreases, we want the opening to be smaller. For relative humidity below 
25% we close the opening. At 60% or higher relative humidity, the opening should be 
completely open. We formulate a model equation for opening factor as  

0.0 25%
25 25% 60%

60 25
1.0 60%

open

RH
RHF RH

RH
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 −= ≤ ≤ −
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EMS Input Objects  

EMS-related input objects to solve this problem are listed below and are included in the 
example file called “EMSAirflowNetworkOpeningControlByHumidity.idf.” 
EnergyManagementSystem:Sensor, 
  ZoneRH , ! Name 
  Zone 1 Node, ! Output:Variable or Output:Meter Index Key Name   
  System Node Relative Humidity; ! Output:Variable or Output:Meter Name 
 
EnergyManagementSystem:Actuator, 
  MyOpenFactor,                            ! Name 
  Zn001:Wall001:Win001,                  ! Component Name   
  AirFlow Network Window/Door Opening, ! Component Type 
  Venting Opening Factor;    ! Control Type 
 
EnergyManagementSystem:ProgramCallingManager, 
  RH Controlled Open Factor ,    ! Name 
  BeginTimestepBeforePredictor , ! EnergyPlus Model Calling Point 
  RH_OpeningController ;         ! Program Name 1 
 
EnergyManagementSystem:Program, 
  RH_OpeningController ,     ! Name 
  IF ZoneRH < 25,  
    SET MyOpenFactor = 0.0 , 
  ELSEIF ZoneRH > 60, 
    SET MyOpenFactor = 1.0 , 
  ELSE, 
    SET MyOpenFactor = (ZoneRH - 25) / (60 - 25), 
  ENDIF; 
 
Output:EnergyManagementSystem,  
  Verbose, 
  Verbose, 
  Verbose;  

 

Example 4. Halt Program Based on Constraint 

Problem Statement 

Heavy users of EnergyPlus explore the enormous parameter space associated with building 
design options. Computational requirements often limit what can be accomplished in a given 
study. For optimizations and other parametric studies, there is usually a tension between 
having a very detailed model that is comfortably accurate, and a simpler model that executes 
faster.  
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For most studies many trial simulations are discarded because they violate some constraint. 
To save computation time, you might consider “fatal–out” simulations where early 
calculations show that some predetermined constraints will not be met in the final result. 
Many studies could save considerable computing resources by prematurely quitting models 
rather than always letting each simulation run to completion. All types of constraints such as 
poor comfort, excessive system iterations, and high energy costs could be used to kill a run. 
You should ask, Is there a way to use the EMS to expedite my optimal searches by stopping 
models prematurely if they fail some test? 

EMS Design Discussion 

As an example, let us assume that the criterion for early exit is that the model fails to be 
sufficiently comfortable. We will start with the small office benchmark example file. Short 
periods of discomfort are tolerated, but if the space is uncomfortable over time, we want to 
abandon the simulation and save computational expense. A simulation can be stopped from 
within an Erl program by calling the built-in function “@FatalHaltEp.”  The EMS system has 
only numeric data types, so we cannot generate text for the error message. Therefore, we 
choose a particular real-numbered value to use as an error code that provides some detail on 
which constraint caused early termination. In this example, we choose the value “1002.50” to 
indicate an average PMV exceeds 2.5 and the value “9001.30” indicates the average PMV 
less than 1.3. We will formulate the constraint by using the result of the Fanger comfort model 
for PMV for the building’s core zone named “Core_ZN.”  If the occupants will be too cold, we 
will call @FatalHaltEp with the error code 9001.30. If the occupants will be too warm during a 
summer design day, we will fatal out with the error code 1002.50. (These values were chosen 
arbitrarily to demonstrate EMS; PMV of 1.3 is not necessarily a problem.) 

To monitor PMV, we will use a trend variable, which we create by using the 
EnergyManagementSystem:TrendVariable input object. A trend variable is a log of historical 
values for Erl variables. A trend log is an array that goes farther and farther back in time. For 
this example, we assume the constraint is to monitor the average PMV for the previous 2-
hour period. The example file has 6 timesteps per hour, so each trend point is 10 minutes 
and a 2-hour average needs 12 timesteps. So the field Number of Timesteps to be Logged 
must be 12 or larger. To access the values stored in a trend variable, the built-in functions 
provided for accessing trends must be used. The @TrendAverage function called with an 
index of 12 will return the 2-hour running average. To monitor this result of running average 
PMV, we set up custom output variable using an EnergyManagementSystem:OutputVariable 
input object.  

EMS Input Objects  

The EMS input objects for this example follow and are contained in the example file called 
“EMSTestMAthAndKill.idf.”  
 EnergyManagementSystem:ProgramCallingManager, 
   Average Building Temperature , ! Name 
   EndOfZoneTimestepBeforeZoneReporting , ! EnergyPlus Model Calling Point 
   updateMy_averagePMV; ! Program Name 1 
    
 EnergyManagementSystem:Sensor, 
   PMV5, !Name 
   Core_ZN , ! Output:Variable or Output:Meter Index Key Name      
   FangerPMV ; ! Output:Variable or Output:Meter Name 
    
 EnergyManagementSystem:TrendVariable, 
   PMVtrendLog1, 
   PMV5, 
   300; 
    
 EnergyManagementSystem:GlobalVariable,  
   PMVrunningAvg;    
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 EnergyManagementSystem:OutputVariable, 
   Running Two Hour Average PMV [PMVunits], ! Name 
   PMVrunningAvg, ! EMS Variable Name 
   Averaged, ! Type of Data in Variable 
   ZoneTimeStep ; ! Update Frequency 
    
 EnergyManagementSystem:Program,   
   UpdateMy_averagePMV, 
   Set PMVrunningAvg = @TrendAverage PMVtrendLog1 12, ! two hour running 
average. 
   RUN Kill_Run_if_Uncomfortable; 
     
 EnergyManagementSystem:Subroutine, 
   Kill_Run_if_Uncomfortable, 
   IF PMVrunningAvg > 2.5, 
     SET tmpError = @FatalHaltEp 1002.50, ! error code "1002.50" for comfort 
avg over 2.5 
   ENDIF, 
   IF PMVrunningAvg < 0.0 - 1.3, 
     SET tmpError = @FatalHaltEp 9001.30, ! error code "9001.30" for comfort 
avg under - 1.3 
   ENDIF;   

 

Example 5. Computed Schedule 

Problem Statement 

Many models have schedule inputs that could be used to control the object, but creating the 
schedules it is too cumbersome. We need to ask, Can we use the EMS to dynamically 
calculate a schedule? 

EMS Design Discussion 

As an example, we will take the model from example 1 and use the EMS to replicate the 
heating and cooling zone temperature setpoint schedules. The input object 
Schedule:Constant has been set up to be available as an actuator. We then add 
EnergyManagementSystem:Actuator objects that set these actuators up as Erl variables.  

To devise an Erl program to compute the schedule, we need to use the built-in variables that 
describe time and day. The built-in variable Hour will provide information about the time of 
day; DayOfWeek will provide information about whether it is the weekend or a weekday.  

EMS Input Objects  

Example EMS input for computing a schedule for heating and cooling setpoints follows and 
are contained in the example file called “EMSCustomSchedule.idf.”  
Schedule:Constant,  
    CLGSETP_SCH, 
    Temperature,  
    24.0; 
 
  EnergyManagementSystem:Actuator,  
    myCLGSETP_SCH_Override,  
    CLGSETP_SCH,Schedule:Constant,Schedule Value; 
     
  EnergyManagementSystem:ProgramCallingManager, 
    My Setpoint Schedule Calculator Example,  
    BeginTimestepBeforePredictor, 
    MyComputedCoolingSetpointProg, 
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    MyComputedHeatingSetpointProg; 
     
  EnergyManagementSystem:Program, 
    MyComputedCoolingSetpointProg, 
    IF (DayOfWeek == 1), 
      Set myCLGSETP_SCH_Override = 30.0  ,  
    ELSEIF (Holiday == 3.0) && (DayOfMonth == 21) && (Month == 1),  !winter 
design day 
      Set myCLGSETP_SCH_Override = 30.0 ,    
    ELSEIF HOUR < 6       ,                    
      Set myCLGSETP_SCH_Override = 30.0  , 
    ELSEIF (Hour >= 6) && (Hour < 22)  && (DayOfWeek >=2) && (DayOfWeek <=6) 
, 
      Set myCLGSETP_SCH_Override = 24.0  , 
    ELSEIF (Hour >= 6) && (hour < 18) && (DayOfWeek == 7) 
      Set myCLGSETP_SCH_Override = 24.0  , 
    ELSEIF (Hour >= 6) && (hour >= 18) && (DayOfWeek == 7)  
      Set myCLGSETP_SCH_Override = 30.0  ,     
    ELSEIF (Hour >= 22)                   , 
      Set myCLGSETP_SCH_Override = 30.0  , 
    ENDIF; 
 
 
  Schedule:Constant,  
    HTGSETP_SCH, 
    Temperature,  
    21.0; 
 
  EnergyManagementSystem:Actuator,  
    myHTGSETP_SCH,  
    HTGSETP_SCH,Schedule:Constant,Schedule Value; 
 
  EnergyManagementSystem:Program, 
   MyComputedHeatingSetpointProg, 
   Set locHour = Hour, ! echo out for debug 
   Set locDay = DayOfWeek, ! echo out for debug 
   Set locHol = Holiday,  ! echo out for debug 
   IF (DayOfWeek == 1), 
     Set myHTGSETP_SCH = 15.6  ,  
   ELSEIF (Holiday == 3.0) && (DayOfYear == 21),  !winter design day 
     Set myHTGSETP_SCH = 21.0 ,    
   ELSEIF HOUR < 5       ,                    
     Set myHTGSETP_SCH = 15.6  , 
   ELSEIF (Hour >= 5) && (Hour < 19)  && (DayOfWeek >=2) && (DayOfWeek <=6) , 
     Set myHTGSETP_SCH = 21.0  , 
   ELSEIF (Hour >= 6) && (hour < 17) && (DayOfWeek == 7), 
     Set myHTGSETP_SCH = 21.0  , 
   ELSEIF (Hour >= 6) && (hour >= 17) && (DayOfWeek == 7) , 
     Set myHTGSETP_SCH = 15.6   ,     
   ELSEIF (Hour >= 19)          , 
     Set myHTGSETP_SCH = 15.6   , 
   ENDIF; 

 

Example 6. Window Shade Control 

Problem Statement 

EnergyPlus offers a wide range of control options in the WindowProperty:ShadingControl 
object, but it is easy to imagine custom schemes for controlling shades or blinds that are not 
available. We need to ask, Can we use the EMS to override the shading controls? 
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EMS Design Discussion 

We will take the example file PurchAirWindowBlind.idf and use EMS to add a new control 
scheme. This file has an interior blind that can be either “on” or “off.”  The control scheme has 
three parts: 

 Deploy the blind whenever too much direct sun would enter the zone and cause 
discomfort for the occupants. 

 Deploy the blind whenever there is a significant cooling load.  
 Leave the blind open whenever the first two constraints have not triggered.  

We assume that a model for the direct sun control is based on incidence angle, where the 
angle is defined as zero for normal incidence relative to the plane of the window. When the 
direct solar incidence angle is less than 45 degrees, we want to draw the blind. EnergyPlus 
has a report variable called “Surface Ext Solar Beam Cosine Of Incidence Angle,” for which 
we will use a sensor in our EnergyManagementSystem:Sensor input object. This sensor is a 
cosine value that we turn into an angle value with the built-in function @ArcCos. Then we will 
use the built-in function @RadToDeg to convert from radians to degrees. This new 
window/solar incidence angle in degree may be an interesting report variable, so we use an 
EnergyManagementSystem:OutputVariable input object to create custom output.  

Because the transmitted solar is a problem only when there is a cooling load, we also trigger 
the blind based on the current data for cooling. The report variable called “Zone/Sys Sensible 
Cooling Rate” is used in an EMS sensor to obtain an Erl variable with the most recent data 
about zone cooling load required to meet setpoint. When this value is positive, we know the 
zone cannot make good use of passive solar heating, so we close the blind.  

The EMS actuator will override the operation of a WindowProperty:ShadingControl input 
object. Related to this, the EDD file shows  

! <EnergyManagementSystem:Actuator Available>, Component Unique Name, Component Type,  Control Type 
EnergyManagementSystem:Actuator Available,ZN001:WALL001:WIN001,Window Shading Control,Control Status 

Although the user-defined name for the WindowProperty:ShadingControl is “INCIDENT 
SOLAR ON BLIND,” the component unique name of the actuator that is available is called 
“ZN001:WALL001:WIN001.”  There could be multiple windows, all with shades, and each is 
governed by a single WindowProperty:ShadingControl input object. The EMS actuator could 
override each window separately. The Control Type is called “Control Status,” and requires 
you to set the status to one of a set of possible control flags. For this case, with only an 
interior shade, there are two states for the actuator to take. The first shows the shade is “off,” 
and corresponds to a value of 0.0. The second shows the interior shade is “on,” and 
corresponds to a value of 6.0.  

EMS Input Objects  

The EMS input objects for this example follow and are contained in the example file called 
“EMSWindowShadeControl.idf.”  
Output:EnergyManagementSystem,  
   Verbose, 
   Verbose, 
   Verbose; 
    
 EnergyManagementSystem:Sensor, 
   Solar_Beam_Incident_Cos, !Name 
   Zn001:Wall001:Win001,! Output:Variable or Output:Meter Index Key Name    
   Surface Ext Solar Beam Cosine Of Incidence Angle; ! Output:Variable or 
Output:Meter Name    
    
 Output:Variable, Zn001:Wall001:Win001, Surface Ext Solar Beam Cosine Of 
Incidence Angle, Timestep; 
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 EnergyManagementSystem:Sensor, 
   Zone_Sensible_Cool_Rate, !Name 
   RESISTIVE ZONE,! Output:Variable or Output:Meter Index Key Name    
   Zone/Sys Sensible Cooling Rate; ! Output:Variable or Output:Meter Name    
  
 Output:Variable, RESISTIVE ZONE, Zone/Sys Sensible Cooling Rate, Timestep; 
    
EnergyManagementSystem:ProgramCallingManager, 
  Window Shading Device EMS Controller,    ! Name 
  BeginTimestepBeforePredictor , ! EnergyPlus Model Calling Point 
  Set_Shade_Control_State ;         ! Program Name 1 
   
EnergyManagementSystem:Actuator, 
  Zn001_Wall001_Win001_Shading_Deploy_Status,   ! Name 
  Zn001:Wall001:Win001,                  ! Component Name  Surface name with 
shade controls 
  Window Shade Control, ! Component Type 
  Control Status;    ! Control Type 
 
 
EnergyManagementSystem:Program, 
  Set_Shade_Control_State,     ! Name 
  !  
  Set IncidentAngleRad = @ArcCos Solar_Beam_Incident_Cos, 
  Set IncidentAngle   = @RadToDeg IncidentAngleRad, 
  ! 
  IF IncidentAngle < 45 , ! Block intense direct sun 
   Set Zn001_Wall001_Win001_Shading_Deploy_Status = 
Shade_Status_Interior_Blind_On, 
  ELSEIF Zone_Sensible_Cool_Rate > 20, ! block to reduce cooling loads 
   Set Zn001_Wall001_Win001_Shading_Deploy_Status = 
Shade_Status_Interior_Blind_On,    
  Else, 
   Set Zn001_Wall001_Win001_Shading_Deploy_Status = Shade_Status_Off , 
  ENDIF ; 
 
EnergyManagementSystem:OutputVariable, 
   Erl Shading Control Status, ! Name 
   Zn001_Wall001_Win001_Shading_Deploy_Status, ! EMS Variable Name 
   Averaged, ! Type of Data in Variable 
   ZoneTimeStep ; ! Update Frequency 
 
EnergyManagementSystem:OutputVariable, 
   Erl Zn001:Wall001:Win001 Incident Angle, ! Name 
   IncidentAngle, ! EMS Variable Name 
   Averaged, ! Type of Data in Variable 
   ZoneTimeStep ; ! Update Frequency 
 
 EnergyManagementSystem:GlobalVariable,  IncidentAngle; 
 
Output:Variable,  
  *,  
  Erl Shading Control Status,  
  Timestep; 
 
Output:Variable,  
  *,  
  Erl Zn001:Wall001:Win001 Incident Angle,  
  Timestep; 
 
 
EnergyManagementSystem:ProgramCallingManager, 
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  Init Window Shading Device Control Constants,    ! Name 
  BeginNewEnvironment , ! EnergyPlus Model Calling Point 
  InitializeShadeControlFlags ;         ! Program Name 1 
 
 EnergyManagementSystem:GlobalVariable,    Shade_Status_None; 
 EnergyManagementSystem:GlobalVariable,    Shade_Status_Off ; 
 EnergyManagementSystem:GlobalVariable,    Shade_Status_Interior_Shade_On; 
 EnergyManagementSystem:GlobalVariable,    Shade_Status_Switchable_Dark; 
 EnergyManagementSystem:GlobalVariable,    Shade_Status_Exterior_Shade_On; 
 EnergyManagementSystem:GlobalVariable,    Shade_Status_Interior_Blind_On; 
 EnergyManagementSystem:GlobalVariable,    Shade_Status_Exterior_Blind_On; 
 EnergyManagementSystem:GlobalVariable,    
Shade_Status_Between_Glass_Shade_On; 
 EnergyManagementSystem:GlobalVariable,    
Shade_Status_Between_Glass_Blind_On; 
 
 
 EnergyManagementSystem:Program, 
    InitializeShadeControlFlags, 
          ! these are control flag values used inside EnergyPlus for window 
shades 
          ! EMS control of window shading devices involves setting the 
control values for shading control actuators with 
          !  one of these values. The variable names can be used or replaced, 
it is the whole number values that trigger  
          !  changes in the modeling.  
          !  Shades and Blinds are either fully on or fully off, partial 
positions require multiple windows. 
          ! the window shading control flag values follow 
          !  -1: if window has no shading device 
    Set Shade_Status_None = 0.0 - 1.0,  ! this is how to write a negative 
number Erl does not have unary "minus,"  only binary subtraction 
          !   0: if shading device is off 
    Set Shade_Status_Off = 0.0, 
          !   1: if interior shade is on 
    Set Shade_Status_Interior_Shade_On = 1.0, 
          !   2: if glazing is switched to darker state 
    Set Shade_Status_Switchable_Dark = 2.0, 
          !   3: if exterior shade is on 
    Set Shade_Status_Exterior_Shade_On = 3.0,  
          !   6: if interior blind is on 
    Set Shade_Status_Interior_Blind_On = 6.0,       
          !   7: if exterior blind is on 
    Set Shade_Status_Exterior_Blind_On = 6.0,    
          !   8: if between-glass shade is on 
    Set Shade_Status_Between_Glass_Shade_On = 8.0, 
          !   9: if between-glass blind is on 
    Set Shade_Status_Between_Glass_Blind_On = 9.0; 
          !  10: window has interior shade that is off but may be triggered 
on later 
          !       to control daylight glare 
          !  20: window has switchable glazing that is unswitched but may be 
switched later 
          !       to control daylight glare or daylight illuminance 
          !  30: window has exterior shade that is off but may be triggered 
on later 
          !       to control daylaight glare or daylight illuminance 
          !  60: window has interior blind that is off but may be triggered 
on later 
          !       to control daylaight glare or daylight illuminance 
          !  70: window has exterior blind that is off but may be triggered 
on later 
          !       to control daylaight glare or daylight illuminance 
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          !  80: window has between-glass shade that is off but may be 
triggered on later 
          !       to control daylaight glare or daylight illuminance 
          !  90: window has between-glass blind that is off but may be 
triggered on later 
          !       to control daylaight glare or daylight illuminance 
          ! A "shading device" may be an exterior, interior or between-glass 
shade or blind, 
          ! or the lower-transmitting (dark) state of switchable glazing 
(e.g., electrochromic). 
          ! In all cases, the unshaded condition is represented 
          ! by the construction given by window's Surface()%Construction and 
          ! the shaded condition is represented by the construction given by 
          ! the window's Surface()%ShadedConstruction 

 

Example 7. Constant Volume Purchased Air System 

Problem Statement 

The simplest way to add HVAC control to an EnergyPlus thermal zone is to use the 
ZoneHVAC:IdealLoadsAirSystem. This was called purchased air in older versions. The ideal 
loads air system is intended for load calculations. You provide input for the supply air 
conditions of drybulb and humidity ratio, but the flow rate cannot be controlled. The model 
operates by varying the flow rate to exactly meet the desired setpoints. However, you may 
want to experiment with various designs in a slightly different way in which, given a 
prescribed supply air situation, then adjust the design to maximize the thermal comfort. It 
would be interesting to use the simple-to-input purchased air model to examine how a zone 
responds to a system, rather than how the system responds to a zone. We should ask, Can 
we use the EMS to prescribe the supply air flow rates for a purchased air model?   

EMS Design Discussion 

For this example we begin with the input file from Example 6 (primarily because it already has 
purchased air). We examine the typical mass flow rates the air system provides to have some 
data to judge what an appropriate constant flow rate might be. A cursory review of the data 
indicates that cooling flow rates of 0.3 kg/s are chosen for two zones and 0.4 kg/s is chosen 
for the third. Heating flow rates of 0.1 and 0.15 kg/s are also chosen.  

We want the model to respond differently for heating and cooling. We define two operating 
states and create global variables to hold that state for each zone. The first state is when the 
zone calls for heating; we will assign a value of 1.0. The second is when the zone calls for 
cooling; we assign 2.0.  

To sense the state we will use EMS sensors associated with the output variable called 
“Zone/Sys Sensible Load Predicted.”  We will set up one of these for each zone and use it as 
input data. If this value is less than zero, the zone is in the cooling state. If it is greater than 
zero, the zone is in the heating state. This predicted load is calculated during the predictor 
part of the model, so we choose the EMS calling point called 
“AfterPredictorAfterHVACManagers.”   

An EMS actuator is available for the ideal loads air system that overrides the air mass flow 
rate (kg/s) delivered by the system when it is on. The override is not absolute in that the 
model will still apply the limits defined in the input object and overrides only if the system is 
“on.”  The internal logic will turn off the air system if the zone is in the thermostat dead band 
or scheduled “off” by availability managers. This “off” state is modeled inside the ideal loads 
air system so it does not need to be calculated in Erl. This control leads to a constant volume 
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system that cycles in an attempt to control the zone conditions. In practice, it can achieve 
relatively good control when loads do not exceed the available capacity.  

EMS Input Objects  

A set of EMS input objects for a constant volume purchased air system serving three zones 
follows are contained in the example file called “EMSConstantVolumePurchAir.idf.” 
EnergyManagementSystem:ProgramCallingManager, 
  Constant Volume Purchased Air Example,    ! Name 
  AfterPredictorAfterHVACManagers , ! EnergyPlus Model Calling Point 
  Determine_Purch_Air_State,         ! Program Name 1 
  Set_Purch_Air; 
   
EnergyManagementSystem:Program, 
  Determine_Purch_Air_State,     ! Name 
  ! State representation:  1.0 is heating, 2.0 is cooling  
  IF (Sensible_Load_Zone_1 <= 0.0) , 
    SET Zone_1_State = 2.0, 
  ELSEIF (Sensible_Load_Zone_1 > 0.0) , 
    SET Zone_1_State = 1.0, 
  ENDIF, 
  IF (Sensible_Load_Zone_2 <= 0.0) , 
    SET Zone_2_State = 2.0, 
  ELSEIF (Sensible_Load_Zone_2 > 0.0) , 
    SET Zone_2_State = 1.0, 
  ENDIF, 
  IF (Sensible_Load_Zone_3 <= 0.0) , 
    SET Zone_3_State = 2.0, 
  ELSEIF (Sensible_Load_Zone_3 > 0.0) , 
    SET Zone_3_State = 1.0, 
  ENDIF; 
   
 
 EnergyManagementSystem:Program, 
  Set_Purch_Air, 
  IF (    Zone_1_State == 2.0), 
    SET ZONE_1_AIR_Mdot = 0.3, 
  ELSEIF (Zone_1_State == 1.0), 
    SET ZONE_1_AIR_Mdot = 0.1, 
  ENDIF, 
  IF (    Zone_2_State == 2.0), 
    SET ZONE_2_AIR_Mdot = 0.3, 
  ELSEIF (Zone_2_State == 1.0), 
    SET ZONE_2_AIR_Mdot = 0.1, 
  ENDIF,   
  IF (    Zone_3_State == 2.0), 
    SET ZONE_3_AIR_Mdot = 0.4, 
  ELSEIF (Zone_3_State == 1.0), 
    SET ZONE_3_AIR_Mdot = 0.15, 
  ENDIF;  
   
 EnergyManagementSystem:GlobalVariable,  Zone_1_State; 
 EnergyManagementSystem:GlobalVariable,  Zone_2_State; 
 EnergyManagementSystem:GlobalVariable,  Zone_3_State; 
    
 EnergyManagementSystem:Actuator,  ZONE_1_AIR_Mdot,ZONE1AIR,Ideal Loads Air 
System,Air Mass Flow Rate;  
 EnergyManagementSystem:Actuator, ZONE_2_AIR_Mdot,ZONE2AIR,Ideal Loads Air 
System,Air Mass Flow Rate; 
 EnergyManagementSystem:Actuator, ZONE_3_AIR_Mdot,ZONE3AIR,Ideal Loads Air 
System,Air Mass Flow Rate; 
 
 EnergyManagementSystem:Sensor, 
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  Sensible_Load_Zone_1, !Name 
  RESISTIVE ZONE,! Output:Variable or Output:Meter Index Key Name    
  Zone/Sys Sensible Load Predicted; ! Output:Variable or Output:Meter Name       
 
 EnergyManagementSystem:Sensor, 
  Sensible_Load_Zone_2, !Name 
  EAST ZONE,! Output:Variable or Output:Meter Index Key Name    
  Zone/Sys Sensible Load Predicted; ! Output:Variable or Output:Meter Name       
       
 EnergyManagementSystem:Sensor, 
  Sensible_Load_Zone_3, !Name 
  NORTH ZONE,! Output:Variable or Output:Meter Index Key Name    
  Zone/Sys Sensible Load Predicted; ! Output:Variable or Output:Meter Name   

 

Example 8. System Sizing with Discrete Package Sizes 

Problem Statement 

One tension often arises with modeling when options being evaluated have an indirect effect 
on air system size. In normal autosizing, the changes in sizes are continuous, but in real 
systems, equipment sizes tend to be discrete. If we start with the Benchmark Strip Mall 
model, we should ask, Could we use the EMS custom calculations to intervene and make the 
final system sizing results follow the discrete sizes available for a particular product line of 
equipment? 

EMS Design Discussion 

Examining the vendor’s literature for one line of commercial packaged single-zone HVAC air 
systems shows that the nominal product sizes include 1200 cfm, 1600 cfm, 2000 cfm, 2400 
cfm, 3000 cfm, 3400, cfm, and 4000 cfm. The literature also classifies units by tonnage of 
cooling capacity; however, in EnergyPlus modeling it is simpler to classify by air flow rate 
rather than by cooling capacity (because the direct expansion models have a tight range for 
allowable cooling capacity per air flow rate and size themselves off the flow rate). We 
construct the following simple model to select the next higher air flow rate product that uses 
the volume flow determined during the usual autosizing calculations, sizeV ,and threshold 
values taken from the nominal product sizes (in m3/s):   

0.0 0.566 0.566

0.566 0.755 0.755

0.755 0.944 0.944

0.944 1.133 1.133

1.133 1.416 1.416

1.416 1.604 1.604

1.604 1.888 1.888

size

size

size

size

size

size

size

V V

V V

V V

V V

V V

V V

V V

< ≤ =

< ≤ =

< ≤ =

< ≤ =

< ≤ =

< ≤ =
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The system sizing calculations determine a value for the volume flow rate. To obtain this 
result for use in an Erl program, we use an EnergyManagementSystem:InternalVariable input 
object to set up a variable for the data called “Intermediate Air System Main Supply Volume 
Flow Rate.”  We can then use this value in our algorithm to find a discrete system size.  
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Once we have the new system size, we need to set up an actuator to apply the new size. For 
this we use an EnergyManagementSystem:Actuator input object to establish control over 
“Sizing:System” type of component using the “Main Supply Volume Flow Rate” control type.  

The EMS calling point for controlling air system sizing is called “EndOfSystemSizing.”  So we 
enter this into the program calling manager.  

For this example, we modify the example file called 
“BenchmarkStripMallNew_USA_IL_CHICAGO-OHARE.idf.”  This file has 10 separate 
packaged units, so rather than repeat the algorithm several times, we use a subroutine so the 
same Erl code can be reused for each air system. The subroutine has two arguments that we 
will declare as global variables:  the input for continuous size and the output for the discrete 
size.  

EMS Input Objects  

A set of input objects for EMS control for discrete resizing of 10 air systems follows and is 
included in the example file called “EMSDiscreteAirSystemSizes.idf.” 
Output:EnergyManagementSystem,  
  Verbose, 
  Verbose, 
  Verbose; 
         
EnergyManagementSystem:ProgramCallingManager, 
  Apply Discrete Package Sizes to Air System Sizing , ! Name 
  EndOfSystemSizing ,    ! EnergyPlus Model Calling Point 
  Resize_PSZ_To_Match_Product_Availability;         ! Program Name 1 
 
 
EnergyManagementSystem:Program, 
  Resize_PSZ_To_Match_Product_Availability , ! Name  
  SET argMainVdot = PSZ_1_CalcMainSupVdot, 
  RUN Select_Discrete_Nominal_Air_Flow, 
  SET PSZ_1_MainSupVdotSet = argDiscreteMainVdot, 
  SET argMainVdot = PSZ_2_CalcMainSupVdot, 
  RUN Select_Discrete_Nominal_Air_Flow, 
  SET PSZ_2_MainSupVdotSet = argDiscreteMainVdot, 
  SET argMainVdot = PSZ_3_CalcMainSupVdot, 
  RUN Select_Discrete_Nominal_Air_Flow, 
  SET PSZ_3_MainSupVdotSet = argDiscreteMainVdot, 
  SET argMainVdot = PSZ_4_CalcMainSupVdot, 
  RUN Select_Discrete_Nominal_Air_Flow, 
  SET PSZ_4_MainSupVdotSet = argDiscreteMainVdot, 
  SET argMainVdot = PSZ_5_CalcMainSupVdot, 
  RUN Select_Discrete_Nominal_Air_Flow, 
  SET PSZ_5_MainSupVdotSet = argDiscreteMainVdot, 
  SET argMainVdot = PSZ_6_CalcMainSupVdot, 
  RUN Select_Discrete_Nominal_Air_Flow, 
  SET PSZ_6_MainSupVdotSet = argDiscreteMainVdot, 
  SET argMainVdot = PSZ_7_CalcMainSupVdot, 
  RUN Select_Discrete_Nominal_Air_Flow, 
  SET PSZ_7_MainSupVdotSet = argDiscreteMainVdot, 
  SET argMainVdot = PSZ_8_CalcMainSupVdot, 
  RUN Select_Discrete_Nominal_Air_Flow, 
  SET PSZ_8_MainSupVdotSet = argDiscreteMainVdot, 
  SET argMainVdot = PSZ_9_CalcMainSupVdot, 
  RUN Select_Discrete_Nominal_Air_Flow, 
  SET PSZ_9_MainSupVdotSet = argDiscreteMainVdot, 
  SET argMainVdot = PSZ_10_CalcMainSupVdot, 
  RUN Select_Discrete_Nominal_Air_Flow, 
  SET PSZ_10_MainSupVdotSet = argDiscreteMainVdot; 
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EnergyManagementSystem:Subroutine,  
  Select_Discrete_Nominal_Air_Flow,  
  ! argMainVdot   Input  
  ! argDiscreteMainVdot  Output 
  IF (argMainVdot <= 0.56628) , ! 1200 cfm 
    SET argDiscreteMainVdot = 0.56628 , 
  ELSEIF (argMainVdot > 0.56628) && (argMainVdot <= 0.75504) , ! 1600 CFM 
    SET argDiscreteMainVdot = 0.75504 ,   
  ELSEIF (argMainVdot > 0.75504) && (argMainVdot <= 0.9438 ) , ! 2000 CFM 
    SET argDiscreteMainVdot = 0.9438 ,     
  ELSEIF (argMainVdot > 0.9438) && (argMainVdot <= 1.13256 ) , ! 2400 CFM   
    SET argDiscreteMainVdot = 1.13256 ,      
  ELSEIF (argMainVdot > 1.13256) && (argMainVdot <= 1.4157 ) , ! 3000 CFM   
    SET argDiscreteMainVdot = 1.4157 ,   
  ELSEIF (argMainVdot > 1.4157) && (argMainVdot <= 1.60446 ) , ! 3400 CFM     
    SET argDiscreteMainVdot = 1.60446 ,     
  ELSEIF (argMainVdot > 1.60446) && (argMainVdot <= 1.8879 ) , ! 4000 CFM   
    SET argDiscreteMainVdot = 1.8879 ,   
  ELSEIF (argMainVdot > 1.8879), ! too high 
    set dummy = @SevereWarnEP 666.0,   
  ENDIF; 
 
EnergyManagementSystem:GlobalVariable, argDiscreteMainVdot; 
EnergyManagementSystem:GlobalVariable, argMainVdot; 
 
EnergyManagementSystem:InternalVariable, 
   PSZ_1_CalcMainSupVdot, 
   PSZ-AC_1:1 , 
   Intermediate Air System Main Supply Volume Flow Rate; 
 
EnergyManagementSystem:Actuator, 
   PSZ_1_MainSupVdotSet,                            ! Name 
   PSZ-AC_1:1  ,                  ! Component Name   
   Sizing:System, ! Component Type 
   Main Supply Volume Flow Rate;    ! Control Type 
    
 
EnergyManagementSystem:InternalVariable, 
   PSZ_2_CalcMainSupVdot, 
   PSZ-AC_2:2 , 
   Intermediate Air System Main Supply Volume Flow Rate; 
 
EnergyManagementSystem:Actuator, 
   PSZ_2_MainSupVdotSet,                            ! Name 
   PSZ-AC_2:2  ,                  ! Component Name   
   Sizing:System, ! Component Type 
   Main Supply Volume Flow Rate;    ! Control Type 
 
EnergyManagementSystem:InternalVariable, 
   PSZ_3_CalcMainSupVdot, 
   PSZ-AC_3:3 , 
   Intermediate Air System Main Supply Volume Flow Rate; 
 
EnergyManagementSystem:Actuator, 
   PSZ_3_MainSupVdotSet,                            ! Name 
   PSZ-AC_3:3  ,                  ! Component Name   
   Sizing:System, ! Component Type 
   Main Supply Volume Flow Rate;    ! Control Type 
 
EnergyManagementSystem:InternalVariable, 
   PSZ_4_CalcMainSupVdot, 
   PSZ-AC_4:4 , 
   Intermediate Air System Main Supply Volume Flow Rate; 
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EnergyManagementSystem:Actuator, 
   PSZ_4_MainSupVdotSet,                            ! Name 
   PSZ-AC_4:4  ,                  ! Component Name   
   Sizing:System, ! Component Type 
   Main Supply Volume Flow Rate;    ! Control Type 
 
EnergyManagementSystem:InternalVariable, 
   PSZ_5_CalcMainSupVdot, 
   PSZ-AC_5:5 , 
   Intermediate Air System Main Supply Volume Flow Rate; 
 
EnergyManagementSystem:Actuator, 
   PSZ_5_MainSupVdotSet,                            ! Name 
   PSZ-AC_5:5  ,                  ! Component Name   
   Sizing:System, ! Component Type 
   Main Supply Volume Flow Rate;    ! Control Type 
 
EnergyManagementSystem:InternalVariable, 
   PSZ_6_CalcMainSupVdot, 
   PSZ-AC_6:6 , 
   Intermediate Air System Main Supply Volume Flow Rate; 
 
EnergyManagementSystem:Actuator, 
   PSZ_6_MainSupVdotSet,                            ! Name 
   PSZ-AC_6:6  ,                  ! Component Name   
   Sizing:System, ! Component Type 
   Main Supply Volume Flow Rate;    ! Control Type 
 
EnergyManagementSystem:InternalVariable, 
   PSZ_7_CalcMainSupVdot, 
   PSZ-AC_7:7 , 
   Intermediate Air System Main Supply Volume Flow Rate; 
 
EnergyManagementSystem:Actuator, 
   PSZ_7_MainSupVdotSet,                            ! Name 
   PSZ-AC_7:7  ,                  ! Component Name   
   Sizing:System, ! Component Type 
   Main Supply Volume Flow Rate;    ! Control Type 
 
EnergyManagementSystem:InternalVariable, 
   PSZ_8_CalcMainSupVdot, 
   PSZ-AC_8:8 , 
   Intermediate Air System Main Supply Volume Flow Rate; 
 
EnergyManagementSystem:Actuator, 
   PSZ_8_MainSupVdotSet,                            ! Name 
   PSZ-AC_8:8  ,                  ! Component Name   
   Sizing:System, ! Component Type 
   Main Supply Volume Flow Rate;    ! Control Type 
 
EnergyManagementSystem:InternalVariable, 
   PSZ_9_CalcMainSupVdot, 
   PSZ-AC_9:9 , 
   Intermediate Air System Main Supply Volume Flow Rate; 
 
EnergyManagementSystem:Actuator, 
   PSZ_9_MainSupVdotSet,                            ! Name 
   PSZ-AC_9:9  ,                  ! Component Name   
   Sizing:System, ! Component Type 
   Main Supply Volume Flow Rate;    ! Control Type 
 
EnergyManagementSystem:InternalVariable, 
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   PSZ_10_CalcMainSupVdot, 
   PSZ-AC_10:10 , 
   Intermediate Air System Main Supply Volume Flow Rate; 
 
EnergyManagementSystem:Actuator, 
   PSZ_10_MainSupVdotSet,                            ! Name 
   PSZ-AC_10:10  ,                  ! Component Name   
   Sizing:System, ! Component Type 
   Main Supply Volume Flow Rate;    ! Control Type 

Example 9. Demand Management 

Problem Statement 

Demand management refers to controlling a building to reduce the peak electrical power 
draws or otherwise improve the load profile from the perspective of the electric utility. 
Managing electricity demand is an important application for EMS. We should ask, Can we 
take the model from example 2 and use the EMS to add demand management? 

EMS Design Discussion 

Example 2 is a model of a large office building, but unfortunately the utility tariff is not a 
demand-based rate. Therefore, we change to a different set of utility rate input objects so the 
model has demand charges.  

For this example, we assume that demand is managed by turning down the lights and 
increasing the cooling setpoint. The EMS calling point chosen is 
“BeginTimestepBeforePredictor” because it allows you to change the lighting power levels 
and temperature setpoints before you predict the zone loads.  

To manage the demand, we first need to develop some targets based on some a priori idea 
of what level of demand should be considered “high.”  Therefore, we first run the model 
without demand management and note the simulation results for demand. There are many 
ways to obtain the demand results, but one method is to obtain them from the tabular report 
for Tariffs called “Native Variables.”  In that report, the row called PeakDemand is the 
demand used to calculate demand charges and is listed in kW. We will use these values to 
construct a target level of demand for each month by taking these results and multiplying by 
0.85 in an effort to reduce demand by 15%. For example, the demand for January was 
1,154.01 kW, so we make our target level to be 0.85 * 1154.01 = 980.91 kW and the demand 
for August was 1,555.20 kW, so the target is 0.85 * 1555.20 = 1,321.92 kW.  

To develop our Erl program, we separate the overall task into two parts:   

1) Determine the current state of demand management control.  
2) Set the controls based on that control state.  
We then divide the Erl programs into two main programs and give them descriptive names:  
“Determine_Current_Demand_Manage_State”;  “Dispatch_Demand_Changes_By_State.”  

The Erl program to determine the control state determines the current status for the demand 
management controls. You can record and manage the control state by setting the value of a 
global variable called “argDmndMngrState.”  For this example, we develop four control states 
that represent four levels of demand management:   

 Level 1 is assigned a value of 0.0 and represents no override to implement changes 
to demand-related controls.  

 Level 2 is assigned a value of 1.0 and represents moderately aggressive overrides 
for demand-related controls.  
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 Level 3 is assigned a value of 2.0 and represents more aggressive override.  
 Level 4 is assigned a value of 3.0 and represents the most aggressive overrides.  

We develop an algorithm for choosing the control state by assuming it should be a function of 
how close the current power level is to the target power level, the current direction for 
changes in power use, and the recent history of control state. The current demand is 
obtained by using a sensor that is based on the “Total Electric Demand” output variable. This 
current demand is compared to the target demand levels discussed as well as a “level 1” 
demand level that is set to be 90% of the target. If the current demand is higher than the level 
1 demand but lower than the target, the state will tend to be at level 1. If the current demand 
is higher than the target, the current state will be either level 2 or level 3 depending on the 
trend direction. However, we do not want the response to be too quick because it leads to too 
much bouncing between control states. Therefore, we also introduce some numerical 
damping with the behavior that once a control state is selected it should be selected for at 
least two timesteps before dropping down to a lower level. This damping is modeled with the 
help of a trend variable that records the control state over time so we can retrieve what the 
control state was during the past two timesteps.  

Once the control state is determined, the Erl programs will use EMS actuators to override 
controls based on the state. The following table summarizes the control adjustments used in 
our example for each control state. 

Table 9. Example 9 Demand Management Adjustments by Control State 

Control State 
Lighting Power 

Adjustment Factor 
Cooling Thermostat Offset 

0 None none 
1 0.9 + 0.8ºC 
2 0.8 + 1.5ºC 
3 0.7 + 2.0ºC 

 
For control state level 0, the actuators are all set to Null so they stop overriding controls and 
return the model to normal operation.  

To alter the lighting power density with EMS, you could use either a direct method that 
employs a Lights actuator or an indirect method that modifies the lighting schedule. For this 
example we use the direct method with EnergyManagementSystem:Actuator input objects 
that enable you to override the Electric Power Level for each zone’s lights. We also set up 
internal variables to obtain the Lighting Power Design Level for each Lights object.  Finally, 
we set up an EMS sensor to obtain the lighting schedule value to use in Erl programs. If the 
demand management control state is 1, 2, or 3, we use the following model to determine a 
new lighting power level: 

Power = (Adjustment Factor) × (Lighting Power Design Level) × (Schedule Value) 

There are also two ways to alter the cooling setpoint with EMS. To dynamically alter the 
cooling setpoints, we modify the schedule rather than directly actuating Zone Temperature 
Control actuators. Changing the schedule allows one actuator to override all the zones; the 
more direct approach would require actuators for each zone. (This can be used to advantage 
if different zones are to be managed differently.)  The algorithm applies an offset depending 
on the control state. In the input file, the schedule for cooling setpoints is called 
CLGSETP_SCH, so we set up an actuator for this Schedule Value. Because the algorithm is 
a simple offset from the original schedule, we need to keep track of the values in the original 
schedule. We cannot use the same schedule as an input to the algorithm because once an 
actuator overrides the schedule value it will corrupt the original schedule. This would be an 
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example of a circular reference problem. Therefore, we make a copy of the cooling setpoint 
schedule, naming it CLGSETP_SCH_Copy, and use the copy in a 
EnergyManagementSystem:Sensor object to obtain the current scheduled value for the 
setpoint. When we override the CLGSETP_SCH schedule, it will not corrupt the values from 
the CLGSTEP_SCH_Copy schedule used as input. 

EMS Input Objects  

The main input objects that implement this example of demand management are listed below 
and are included in the example file called “EMSDemandManager_LargeOffice.idf.”  The 
results indicate that demand management controls could reduce electricity costs by around 
$40,000 or 10%.  
EnergyManagementSystem:ProgramCallingManager, 
  Demand Manager Demonstration,  
  BeginTimestepBeforePredictor, 
  Determine_Current_Demand_Manage_State, 
  Dispatch_Demand_Controls_By_State; 
 
EnergyManagementSystem:Program, 
  Determine_Current_Demand_Manage_State, 
  Set localDemand = CurntFacilityElectDemand / 1000.0 ,  
  Set CurrntTrend = @TrendDirection FacilityElectTrend 4, 
  IF (Month == 1) , 
    Set argTargetDemand = 0.85 * 1154.01, 
    Set argCrntDmnd = localDemand, 
    Set argTrendDirection = CurrntTrend, 
  ELSEIF (Month == 2),  
    Set argTargetDemand = 0.85 * 1150.85 , 
    Set argCrntDmnd = localDemand, 
    Set argTrendDirection = CurrntTrend, 
  ELSEIF (Month == 3), 
    Set argTargetDemand = 0.85 * 1313.56 , 
    Set argCrntDmnd = localDemand, 
    Set argTrendDirection = CurrntTrend, 
  ELSEIF (Month == 4),  
    Set argTargetDemand = 0.85 * 1364.28,  
    Set argCrntDmnd = localDemand, 
    Set argTrendDirection = CurrntTrend,     
  ELSEIF (Month == 5), 
    Set argTargetDemand = 0.85 * 1506.29  , 
    Set argCrntDmnd = localDemand, 
    Set argTrendDirection = CurrntTrend,   
  ELSEIF (Month == 6), 
    Set argTargetDemand = 0.85 * 1516.93  , 
    Set argCrntDmnd = localDemand, 
    Set argTrendDirection = CurrntTrend,   
 
  ELSEIF (Month == 7), 
    Set argTargetDemand = 0.85 * 1545.20  , 
    Set argCrntDmnd = localDemand, 
    Set argTrendDirection = CurrntTrend,   
  ELSEIF (Month == 8), 
    Set argTargetDemand = 0.85 * 1555.20  , 
    Set argCrntDmnd = localDemand, 
    Set argTrendDirection = CurrntTrend,   
  ELSEIF (Month == 9), 
    Set argTargetDemand = 0.85 * 1491.38  , 
    Set argCrntDmnd = localDemand, 
    Set argTrendDirection = CurrntTrend,  
  ELSEIF (Month == 10), 
    Set argTargetDemand = 0.85 * 1402.86  , 
    Set argCrntDmnd = localDemand, 
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    Set argTrendDirection = CurrntTrend,     
  ELSEIF (Month == 11), 
    Set argTargetDemand = 0.85 * 1418.69  , 
    Set argCrntDmnd = localDemand, 
    Set argTrendDirection = CurrntTrend,   
  ELSEIF (Month == 12), 
    Set argTargetDemand = 0.85 * 1440.48  , 
    Set argCrntDmnd = localDemand, 
    Set argTrendDirection = CurrntTrend, 
  ENDIF, 
  Run Find_Demand_State;    
   
EnergyManagementSystem:Subroutine, 
  Find_Demand_State,  
  !  argTargetDemand  Input  kW level target 
  !  argCrntDmnd  Input kW level current 
  !  argTrendDirection  Input   J/hour  
  !  argDmndMngrState      Output  value code, 0.0 = no management,  
  !      1.0 = level 1 demand management 
  !                                             2.0 = level 2 demand 
management 
  !                                             3.0 = level 3 demand 
management 
  Set DmndStateX1 = @TrendValue Demand_Mgr_State_Trend 1, 
  Set DmndStateX2 = @TrendValue Demand_Mgr_State_Trend 2, 
  Set Level1Demand = 0.9 * argTargetDemand, 
  Set argCrntDmnd = argCrntDmnd, 
  Set argTargetDemand = argTargetDemand, 
  SET argDmndMngrState = DmndStateX1, ! initialize to last state then model 
changes 
  IF (argCrntDmnd > Level1Demand) && (argCrntDmnd <argTargetDemand) && 
(argTrendDirection > 0.0),  
   
    IF DmndStateX1 <= 1.0,  
      SET argDmndMngrState = 1.0, 
    ELSEIF (DmndStateX1 == 2.0) && (DmndStateX2 < 2.0),  
      SET argDmndMngrState = 2.0,  ! go at least two timesteps at 2.0 
    ELSEIF (DmndStateX1 == 3.0) && (DmndStateX2 == 3.0),  
      SET argDmndMngrState = 2.0, 
    ELSEIF (DmndStateX1 == 3.0) && (DmndStateX2 == 2.0),  
      SET argDmndMngrState = 3.0,  ! go at least two timesteps at 3.0 
    ENDIF, 
       
  ELSEIF (argCrntDmnd > argTargetDemand) && (argTrendDirection < 0.0), 
    IF DmndStateX1 <= 2.0,  
      SET argDmndMngrState = 2.0, 
    ELSEIF (DmndStateX1 == 3.0) && (DmndStateX2 == 2.0) , ! go at least two 
timesteps at 3.0 
      SET argDmndMngrState = 3.0, 
    ELSEIF (DmndStateX1 == 3.0) && (DmndStateX2 == 3.0),  
      SET argDmndMngrState = 2.0, 
    ENDIF,     
     
  ELSEIF (argCrntDmnd > argTargetDemand) && (argTrendDirection >= 0.0), 
    Set argDmndMngrState = 3.0, 
  ENDIF; 
 
 
EnergyManagementSystem:Program,   
  Dispatch_Demand_Controls_By_State, 
  IF     (argDmndMngrState == 0.0),  
    RUN Unset_Demand_Controls,  
  ELSEIF (argDmndMngrState == 1.0), 
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    RUN Set_Demand_Level1_Controls,  
  ELSEIF (argDmndMngrState == 2.0), 
    Run Set_Demand_Level2_Controls, 
  ELSEIF (argDmndMngrState == 3.0), 
    Run Set_Demand_Level3_Controls,   
  ENDIF; 
   
EnergyManagementSystem:Subroutine,   
  Unset_Demand_Controls, 
  SET Set_Cooling_Setpoint_Sched    = Null,  
  SET Set_Basement_Lights           = Null, 
  SET Set_Core_bottom_Lights        = Null, 
  SET Set_Core_mid_Lights           = Null,   
  SET Set_Core_top_Lights           = Null,    
  SET Set_Perimeter_bot_ZN_3_Lights = Null,   
  SET Set_Perimeter_bot_ZN_2_Lights = Null,  
  SET Set_Perimeter_bot_ZN_1_Lights = Null,    
  SET Set_Perimeter_bot_ZN_4_Lights = Null,  
  SET Set_Perimeter_mid_ZN_3_Lights = Null,  
  SET Set_Perimeter_mid_ZN_2_Lights = Null, 
  SET Set_Perimeter_mid_ZN_1_Lights = Null,  
  SET Set_Perimeter_mid_ZN_4_Lights = Null,  
  SET Set_Perimeter_top_ZN_3_Lights = Null,  
  SET Set_Perimeter_top_ZN_2_Lights = Null,  
  SET Set_Perimeter_top_ZN_1_Lights = Null, 
  SET Set_Perimeter_top_ZN_4_Lights = Null; 
   
EnergyManagementSystem:Subroutine,   
  Set_Demand_Level1_Controls, 
  ! set lighting power to 90% of what it would otherwise be 
  SET Set_Cooling_Setpoint_Sched    = Cooling_Setpoint_Sched + 0.8, ! add 0.8 
deg C to cooling setpoint 
  SET Set_Basement_Lights           = 0.90 * Basement_Lights * 
BLDG_LIGHT_SCH, 
  SET Set_Core_bottom_Lights        = 0.90 * Core_bottom_Lights * 
BLDG_LIGHT_SCH, 
  SET Set_Core_mid_Lights           = 0.90 * Core_mid_Lights * 
BLDG_LIGHT_SCH,   
  SET Set_Core_top_Lights           = 0.90 * Core_top_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_bot_ZN_3_Lights = 0.90 * Perimeter_bot_ZN_3_Lights * 
BLDG_LIGHT_SCH,   
  SET Set_Perimeter_bot_ZN_2_Lights = 0.90 * Perimeter_bot_ZN_2_Lights * 
BLDG_LIGHT_SCH,  
  SET Set_Perimeter_bot_ZN_1_Lights = 0.90 * Perimeter_bot_ZN_1_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_bot_ZN_4_Lights = 0.90 * Perimeter_bot_ZN_4_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_mid_ZN_3_Lights = 0.90 * Perimeter_mid_ZN_3_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_mid_ZN_2_Lights = 0.90 * Perimeter_mid_ZN_2_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_mid_ZN_1_Lights = 0.90 * Perimeter_mid_ZN_1_Lights * 
BLDG_LIGHT_SCH,     
  SET Set_Perimeter_mid_ZN_4_Lights = 0.90 * Perimeter_mid_ZN_4_Lights * 
BLDG_LIGHT_SCH,      
  SET Set_Perimeter_top_ZN_3_Lights = 0.90 * Perimeter_top_ZN_3_Lights * 
BLDG_LIGHT_SCH,      
  SET Set_Perimeter_top_ZN_2_Lights = 0.90 * Perimeter_top_ZN_2_Lights * 
BLDG_LIGHT_SCH,      
  SET Set_Perimeter_top_ZN_1_Lights = 0.90 * Perimeter_top_ZN_1_Lights * 
BLDG_LIGHT_SCH,    
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  SET Set_Perimeter_top_ZN_4_Lights = 0.90 * Perimeter_top_ZN_4_Lights * 
BLDG_LIGHT_SCH;    
  
EnergyManagementSystem:Subroutine,   
  Set_Demand_Level2_Controls, 
  ! set lighting power to 80% of what it would otherwise be 
  SET Set_Cooling_Setpoint_Sched    = Cooling_Setpoint_Sched + 1.5, ! add 1.5 
deg C to cooling setpoint 
  SET Set_Basement_Lights           = 0.80 * Basement_Lights * 
BLDG_LIGHT_SCH, 
  SET Set_Core_bottom_Lights        = 0.80 * Core_bottom_Lights * 
BLDG_LIGHT_SCH, 
  SET Set_Core_mid_Lights           = 0.80 * Core_mid_Lights * 
BLDG_LIGHT_SCH,   
  SET Set_Core_top_Lights           = 0.80 * Core_top_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_bot_ZN_3_Lights = 0.80 * Perimeter_bot_ZN_3_Lights * 
BLDG_LIGHT_SCH,   
  SET Set_Perimeter_bot_ZN_2_Lights = 0.80 * Perimeter_bot_ZN_2_Lights * 
BLDG_LIGHT_SCH,  
  SET Set_Perimeter_bot_ZN_1_Lights = 0.80 * Perimeter_bot_ZN_1_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_bot_ZN_4_Lights = 0.80 * Perimeter_bot_ZN_4_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_mid_ZN_3_Lights = 0.80 * Perimeter_mid_ZN_3_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_mid_ZN_2_Lights = 0.80 * Perimeter_mid_ZN_2_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_mid_ZN_1_Lights = 0.80 * Perimeter_mid_ZN_1_Lights * 
BLDG_LIGHT_SCH,     
  SET Set_Perimeter_mid_ZN_4_Lights = 0.80 * Perimeter_mid_ZN_4_Lights * 
BLDG_LIGHT_SCH,      
  SET Set_Perimeter_top_ZN_3_Lights = 0.80 * Perimeter_top_ZN_3_Lights * 
BLDG_LIGHT_SCH,      
  SET Set_Perimeter_top_ZN_2_Lights = 0.80 * Perimeter_top_ZN_2_Lights * 
BLDG_LIGHT_SCH,      
  SET Set_Perimeter_top_ZN_1_Lights = 0.80 * Perimeter_top_ZN_1_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_top_ZN_4_Lights = 0.80 * Perimeter_top_ZN_4_Lights * 
BLDG_LIGHT_SCH;   
  
EnergyManagementSystem:Subroutine,   
  Set_Demand_Level3_Controls, 
  ! set lighting power to 70% of what it would otherwise be 
  SET Set_Cooling_Setpoint_Sched    = Cooling_Setpoint_Sched + 2.0, ! add 2.0 
deg C to cooling setpoint 
  SET Set_Basement_Lights           = 0.70 * Basement_Lights * 
BLDG_LIGHT_SCH, 
  SET Set_Core_bottom_Lights        = 0.70 * Core_bottom_Lights * 
BLDG_LIGHT_SCH, 
  SET Set_Core_mid_Lights           = 0.70 * Core_mid_Lights * 
BLDG_LIGHT_SCH,   
  SET Set_Core_top_Lights           = 0.70 * Core_top_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_bot_ZN_3_Lights = 0.70 * Perimeter_bot_ZN_3_Lights * 
BLDG_LIGHT_SCH,   
  SET Set_Perimeter_bot_ZN_2_Lights = 0.70 * Perimeter_bot_ZN_2_Lights * 
BLDG_LIGHT_SCH,  
  SET Set_Perimeter_bot_ZN_1_Lights = 0.70 * Perimeter_bot_ZN_1_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_bot_ZN_4_Lights = 0.70 * Perimeter_bot_ZN_4_Lights * 
BLDG_LIGHT_SCH,    
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  SET Set_Perimeter_mid_ZN_3_Lights = 0.70 * Perimeter_mid_ZN_3_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_mid_ZN_2_Lights = 0.70 * Perimeter_mid_ZN_2_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_mid_ZN_1_Lights = 0.70 * Perimeter_mid_ZN_1_Lights * 
BLDG_LIGHT_SCH,     
  SET Set_Perimeter_mid_ZN_4_Lights = 0.70 * Perimeter_mid_ZN_4_Lights * 
BLDG_LIGHT_SCH,      
  SET Set_Perimeter_top_ZN_3_Lights = 0.70 * Perimeter_top_ZN_3_Lights * 
BLDG_LIGHT_SCH,      
  SET Set_Perimeter_top_ZN_2_Lights = 0.70 * Perimeter_top_ZN_2_Lights * 
BLDG_LIGHT_SCH,      
  SET Set_Perimeter_top_ZN_1_Lights = 0.70 * Perimeter_top_ZN_1_Lights * 
BLDG_LIGHT_SCH,    
  SET Set_Perimeter_top_ZN_4_Lights = 0.70 * Perimeter_top_ZN_4_Lights * 
BLDG_LIGHT_SCH;   
  
 
EnergyManagementSystem:GlobalVariable,argTargetDemand;  
EnergyManagementSystem:GlobalVariable,argCrntDmnd; 
EnergyManagementSystem:GlobalVariable,argTrendDirection; 
EnergyManagementSystem:GlobalVariable,argDmndMngrState; 
 
EnergyManagementSystem:Sensor, 
  BLDG_LIGHT_SCH, !- Name 
  BLDG_LIGHT_SCH, !- Output:Variable or Output:Meter Index Key Name 
  Schedule Value; !- Output:Variable or Output:Meter Name  
 
 
EnergyManagementSystem:Sensor, 
  CurntFacilityElectDemand,  !- Name 
  Whole Building,        !- Output:Variable or Output:Meter Index Key Name 
  Total Electric Demand; !- Output:Variable or Output:Meter Name  
 
 
EnergyManagementSystem:TrendVariable, 
  Demand_Mgr_State_Trend , !- Name 
  argDmndMngrState, !- EMS Variable Name 
  48 ; !- Number of Timesteps to be Logged 
 
EnergyManagementSystem:TrendVariable, 
  FacilityElectTrend , !- Name 
  CurntFacilityElectDemand, !- EMS Variable Name 
  144 ; !- Number of Timesteps to be Logged 
 
EnergyManagementSystem:Sensor, 
  Cooling_Setpoint_Sched,  !- Name 
  CLGSETP_SCH_Copy,        !- Output:Variable or Output:Meter Index Key Name 
  Schedule Value; !- Output:Variable or Output:Meter Name  
 
EnergyManagementSystem:Actuator, 
  Set_Cooling_Setpoint_Sched,  !- Name 
  CLGSETP_SCH ,     !- Actuated Component Unique Name 
  Schedule:Compact,   !- Actuated Component Type 
  Schedule Value    ; !- Actuated Component Control Type 
 
EnergyManagementSystem:OutputVariable, 
  Erl Cooling Setpoint [C],    !- Name 
  Set_Cooling_Setpoint_Sched,  !- EMS Variable Name 
  Averaged   ,                 !- Type of Data in Variable 
  ZoneTimestep;                !- Update Frequency 
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Output:Variable,  
  *,  
  Erl Cooling Setpoint,  
  Timestep; 
 
EnergyManagementSystem:Actuator, 
  Set_Basement_Lights,  !- Name 
  Basement_Lights ,     !- Actuated Component Unique Name 
  Lights,               !- Actuated Component Type 
  Electric Power Level; !- Actuated Component Control Type 
EnergyManagementSystem:InternalVariable, 
  Basement_Lights , !- Name 
  Basement_Lights , !- Internal Data Index Key Name 
  Lighting Power Design Level ; !- Internal Data Type 
 
EnergyManagementSystem:Actuator, 
  Set_Core_bottom_Lights, !- Name 
  Core_bottom_Lights ,  !- Actuated Component Unique Name 
  Lights,               !- Actuated Component Type 
  Electric Power Level; !- Actuated Component Control Type 
EnergyManagementSystem:InternalVariable, 
  Core_bottom_Lights , !- Name 
  Core_bottom_Lights , !- Internal Data Index Key Name 
  Lighting Power Design Level ; !- Internal Data Type 
 
<< Snipped remaining Lights Sensors and Actuators >> 

 

Example 10. Plant Loop Override Control 

Problem Statement 

A common occurrence in EnergyPlus central plant simulations is for a component to be 
designed well, but during the course of an annual simulation, it is operated outside of its 
allowable region.  This is due to the governing control strategies (operating schemes).  These 
operation schemes may not have the intelligence to say, turn off a cooling tower when the 
outdoor temperature is too low. 
Within the EnergyPlus example files, the cooling tower offers warnings stating that the tower 
temperature is going below a low temperature limit.  We should ask, can we use a simple 
EMS addition to an input file to override the loop and turn off the cooling tower to avoid these 
situations and therefore the warnings? 

EMS Design Discussion 

For this example, we will start with the example file that is packaged with EnergyPlus called 
EcoRoofOrlando.idf.  This is one example of an input file where a cooling tower throws 
warnings due to operating at too low of a temperature.  Although the input file has many 
aspects related to zone and HVAC, we will only be interested in the loop containing the 
tower, which is a CondenserLoop named Chiller Plant Condenser Loop. The loop has a 
minimum loop temperature of 5 degrees Celsius, as specified by the CondenserLoop object.   

In order to avoid these warnings and properly shut off the tower, EMS will be used to check 
the outdoor temperature and shut down the whole loop.  Special care must be taken when 
manipulating plant and condenser loops with EMS.  The most robust way found is to both 
disable the loop equipment and also override (turn off) the loop.  Skipping either of these can 
cause mismatches where either components are still expecting flow but the pump is not 
running, or the pump is trying to force flow through components which are disabled.  Either of 
these cases can cause unstable conditions and possibly fatal flow errors. 
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The outdoor air temperature must be checked in order to determine what the EMS needs to 
do at a particular point in the simulation.  This is handled by use of an EMS sensor monitoring 
the Outdoor Dry Bulb standard E+ output variable. 

To manage the loop and pump, actuators are employed on both.  The pump actuator is a 
mass flow rate override.  This can be used to set the flow to zero, effectively shutting off the 
pump.  The loop actuator is an on/off supervisory control, which allows you to “shut the entire 
loop down.”  This actuator will not actually shut the loop down, it effectively empties the 
equipment availability list, so that there is no equipment available to reject/absorb load on the 
supply side.  If you use this actuator alone to “shut down the loop,” you may find that the 
pump is still flowing fluid around the loop, but the equipment will not be running. 

The EMS calling point chosen is “InsideHVACSystemIterationLoop,” so that the operation will 
be updated every time the plant loops are simulated.   

The Erl program is quite simple for this case.  If the outdoor dry bulb temperature goes below 
a certain value, the loop and pump actuators are set to zero.  If the outdoor temperature is 
equal to or above this value, the actuators are set to Null, relinquishing control back to the 
regular operation schemes.  In modifying this specific input file it was found that the outdoor 
dry bulb temperature which removed these warnings was six degrees Celsius.  We also 
create a custom output variable called “EMS Condenser Flow Override On” to easily record 
when the overrides have occurred.  

EMS Input Objects  

The main input objects that implement this example of plant loop control are listed below and 
are included in the example file called “EMSPlantLoopOverrideControl.idf.”  The addition of 
the EMS objects properly shuts down the loop as the outdoor temperature go below the 
transition value, and the simulation error file shows no warnings for the tower outlet 
temperature. 
    EnergyManagementSystem:Sensor, 
    OutdoorTemp,         !- Name 
    Environment,         !- Output:Variable Index Key Name 
    Outdoor Dry Bulb;    !- Output:Variable Name 
 
  EnergyManagementSystem:Actuator, 
    Actuator_Loop,       !- Name 
    Chiller Plant Condenser Loop, !- Actuated Component Unique Name 
    Plant Loop Overall,  !- Actuated Component Type 
    On/Off Supervisory;  !- Actuated Component Control Type 
 
  EnergyManagementSystem:Actuator, 
    PumpFlowOverride,    !- Name 
    Chiller Plant Cnd Circ Pump,  !- Actuated Component Unique Name 
    Pump,                !- Actuated Component Type 
    Pump Mass Flow Rate; !- Actuated Component Control Type   
     
  EnergyManagementSystem:GlobalVariable, 
    PumpFlowOverrideReport; 
   
  EnergyManagementSystem:OutputVariable, 
    EMS Condenser Flow Override On [On/Off], !- Name 
    PumpFlowOverrideReport,    !- EMS Variable Name 
    Averaged,            !- Type of Data in Variable 
    SystemTimeStep;      !- Update Frequency  
 
 
     
  EnergyManagementSystem:ProgramCallingManager, 
    Condenser OnOff Management, 
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    InsideHVACSystemIterationLoop, 
    TowerControl;     
 
  EnergyManagementSystem:Program, 
    TowerControl, 
    IF (OutdoorTemp < 6.0), 
      SET Actuator_Loop = 0.0, 
      SET PumpFlowOverride = 0.0, 
      SET PumpFlowOverrideReport = 1.0,  
    ELSE, 
      SET Actuator_Loop = Null, 
      SET PumpFlowOverride = Null, 
      SET PumpFlowOverrideReport = 0.0,       
    ENDIF;     
  
  Output:Variable, 
    *, 
    EMS Condenser Flow Override On, 
    Hourly;     

Example 11. Performance Curve Result Override 

Problem Statement 

The output of EnergyPlus performance curves (or tables) can be modified as necessary to 
simulate hardware or controls that cannot be accurately realized using a single performance 
curve. This example describes a method for modifying the capacity of a DX cooling coil via 
the DX coil objects Total Cooling Capacity Function of Temperature performance curve 
object. 
A particular manufacturer controls the DX cooling coil such that the capacity of the coil 
changes at 31°C outdoor air dry-bulb temperature. The following EMS program logic will 
calculate alternate inputs for cooling coil capacity and over-write the existing performance 
curve results. 

EMS Design Discussion 

For this example, we will start with the equation for cooling capacity of the DX coil object (ref. 
Coil:Cooling:DX:SingleSpeed). From the engineering reference, the equation used to 
calculate the cooling capacity is: 

 

The first term (Twb,i) refers to the cooling coil inlet air wet-bulb temperature and the second 
(Tc,i) refers to the outdoor condenser inlet air dry-bulb temperature. Using the EMS, a new 
total capacity as a function of temperature value will be calculated and used during the 
simulation. The Energyplus input objects for the cooling coil capacity curve, the associated 
outdoor air mixer object, and the original cooling capacity performance curve are shown here. 
  Coil:Cooling:DX:SingleSpeed, 
    Zone1PTHPDXCoolCoil,     !- Name 
    CoolingCoilAvailSched,   !- Availability Schedule Name 
    8750.0,                  !- Rated Total Cooling Capacity {W} 
    0.75,                    !- Rated Sensible Heat Ratio 
    3.0,                     !- Rated COP 
    0.5,                     !- Rated Air Flow Rate {m3/s} 
    ,                        !- Rated Evaporator Fan Power Per Volume Flow 
Rate {W/(m3/s)} 
    Zone1PTHPFanOutletNode,  !- Air Inlet Node Name 
    Zone1PTHPDXCoolCoilOutletNode,  !- Air Outlet Node Name 

( ) ( ) ( ) ( ) ( )( )2 2
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    HPACCoolCapFT,           !- Total Cooling Capacity Function of 
Temperature Curve Name 
    HPACCoolCapFFF,          !- Total Cooling Capacity Function of Flow 
Fraction Curve Name 
    HPACEIRFT,               !- Energy Input Ratio Function of Temperature 
Curve Name 
    HPACEIRFFF,              !- Energy Input Ratio Function of Flow Fraction 
Curve Name 
    HPACPLFFPLR;             !- Part Load Fraction Correlation Curve Name 
 
  OutdoorAir:Mixer, 
    Zone1PTHPOAMixer,        !- Name 
    Zone1PTHPOAMixerOutletNode,  !- Mixed Air Node Name 
    Zone1PTHPOAInNode,       !- Outdoor Air Stream Node Name 
    Zone1PTHPExhNode,        !- Relief Air Stream Node Name 
    Zone1PTHPAirInletNode;   !- Return Air Stream Node Name 
 
  Curve:Biquadratic, 
    HPACCoolCapFT,           !- Name 
    0.942587793,             !- Coefficient1 Constant 
    0.009543347,             !- Coefficient2 x 
    0.000683770,             !- Coefficient3 x**2 
    -0.011042676,            !- Coefficient4 y 
    0.000005249,             !- Coefficient5 y**2 
    -0.000009720,            !- Coefficient6 x*y 

 
Note that the Total Cooling Capacity Function of Temperature Curve Name is 
HPACCoolCapFT and the inlet air node for this cooling coil is Zone1PTHPFanOutletNode. 
From the mixer object, the outdoor air node name is Zone1PTHPOAInNode. The existing 
cooling capacity performance curve name is HPACCoolCapFT. These node or object names 
will be used in the EMS program to point to the node or object as required. 

EMS Input Objects  

The main input objects that implement this example for over-riding a performance curve 
result are listed below. Note that the node wet-bulb temperature at the inlet node of the 
cooling coil is calculated both using the node wet-bulb temperature and the psychrometric 
function to calculate a wet-bulb temperature from dry-bulb temperature and humidity ratio. 
The node wet-bulb temperature EMS sensor is left in this example for the sole purpose of 
showing how to access this node variable in a direct and indirect manner. 
Referring to the cooling capacity equation above, a new equation must be developed to 
represent this same performance aspect of the cooling coil. Since, in this example, the 
cooling capacity changes at 31°C, one of the coefficients is modified and used in the IF block 
to modify the cooling capacity above and below this outdoor air temperature limit. Note also 
that the coefficients used in the EMS program are all positive values and the negative sign is 
accounted for the CurveInput equation. Also, the value of C2 was changed to a negative 
value to represent the change in performance at 31°C. To calculate the new performance 
curve results, EMS sensors are placed at the cooling coil air inlet node to capture air dry-bulb 
temperature and humidity ratio, and at the outdoor air mixer outdoor air node inlet to capture 
outdoor air dry-bulb temperature and pressure. The curve input equation is identical to the 
equation shown above except that 1) the equation coefficients are all positive and any 
negative coefficients are accounted for in the equation itself, and 2) alternate coefficients 
(actually only C2a in this example) are used for the second equation. The results of this 
example show a marked difference in the cooling capacity above 31°C. 
 
  EnergyManagementSystem:ProgramCallingManager, 
    EMSBasedCurveManager,  !- Name 
    AfterPredictorBeforeHVACManagers,  !- EnergyPlus Model Calling Point 
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    CurveOverwriteMGR;     !- Program Name 1 
 
  EnergyManagementSystem:Program, 
    CurveOverwriteMGR, 
    SET TTmp = CoilInletDBT, 
    SET WTmp = CoilInletW, 
    SET PTmp = Pressure, 
    SET MyWB = @TwbFnTdbWPb TTmp WTmp PTmp, 
    SET IVOne = CoilInletWBT, 
    SET IVOne = MyWB, 
    SET IVTwo = OAT, 
    SET IVThree = IVOne*IVTwo, 
    SET C1 = 0.942567793, 
    SET C2 = 0.009543347, 
    SET C2a = 0.009543347, !-  -0.009543347 
    SET C3 = 0.00068377, 
    SET C4 = 0.011042676, !-  -0.011042676 
    SET C5 = 0.000005249, 
    SET C6 = 0.000009720, !-  -0.000009720 
    IF OAT < 31.0, 
      SET CurveInput = C1 + (C2*IVOne) + (C3*IVOne*IVone) - (C4*IVTwo) + 
(C5*IVTwo*IVTwo) - (C6*IVThree), 
    ELSE, 
      SET CurveInput = C1 - (C2a*IVOne) + (C3*IVOne*IVone) - (C4*IVTwo) + 
(C5*IVTwo*IVTwo) - (C6*IVThree), 
    ENDIF, 
    SET CurveOverwrite = CurveInput; 
 
  EnergyManagementSystem:Actuator, 
    CurveOverwrite,    !- Name 
    HPACCOOLCAPFT,     !- Actuated Component Unique Name 
    Curve,             !- Actuated Component Type 
    Curve Result;      !- Actuated Component Control Type 
 
  EnergyManagementSystem:Sensor, 
    ActualCurve,           !- Name 
    HPACCOOLCAPFT,     !- Output:Variable or Output:Meter Index Key Name 
    Performance Curve Output;  !- Output:Variable or Output:Meter Name 
 
  EnergyManagementSystem:Sensor, 
    CoilInletWBT,          !- Name 
    Zone1PTHPFanOutletNode, !- Output:Variable or Output:Meter Index Key Name 
    System Node Wetbulb Temp; !- Output:Variable or Output:Meter Name 
 
  EnergyManagementSystem:Sensor, 
    Pressure,          !- Name 
    Zone1PTHPOAInNode,     !- Output:Variable or Output:Meter Index Key Name 
    System Node Pressure ;  !- Output:Variable or Output:Meter Name 
 
  EnergyManagementSystem:Sensor, 
    CoilInletDBT,          !- Name 
    Zone1PTHPFanOutletNode, !- Output:Variable or Output:Meter Index Key Name 
    System Node Temp;  !- Output:Variable or Output:Meter Name 
 
  EnergyManagementSystem:Sensor, 
    CoilInletW,          !- Name 
    Zone1PTHPFanOutletNode, !- Output:Variable or Output:Meter Index Key Name 
    System Node Humidity Ratio;  !- Output:Variable or Output:Meter Name 
 
  EnergyManagementSystem:Sensor, 
    OAT,          !- Name 
    Zone1PTHPOAInNode,     !- Output:Variable or Output:Meter Index Key Name 
    System Node Temp;  !- Output:Variable or Output:Meter Name 



EMS Examples Example 11. Performance Curve Result Override 
 

9/27/12 87  
 

 
  EnergyManagementSystem:OutputVariable, 
    ERLCurveValue, ! Name 
    ActualCurve,   ! EMS Variable Name 
    Averaged,      ! Type of Data in Variable 
    ZoneTimeStep ; ! Update Frequency 
 
  EnergyManagementSystem:OutputVariable, 
    NewCurveValue, ! Name 
    CurveInput,    ! EMS Variable Name 
    Averaged,      ! Type of Data in Variable 
    ZoneTimeStep ; ! Update Frequency 
 
  Output:EnergyManagementSystem, 
    Verbose,       !- Actuator Availability Dictionary Reporting 
    Verbose,       !- Internal Variable Availability Dictionary Reporting 
    Verbose;       !- EMS Runtime Language Debug Output Level 
 
  Output:Variable,  
    *,  
    ERLCurveValue,  
    Hourly; 
 
 Output:Variable, HPACCOOLCAPFT,Performance Curve Output,Hourly; 
 Output:Variable, HPACCOOLCAPFT,Performance Curve Input 1,Hourly; 
 Output:Variable, HPACCOOLCAPFT,Performance Curve Input 2,Hourly; 
 Output:Variable, Zone1PTHPFanOutletNode, System Node Wetbulb Temp, Hourly; 
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Figure 4. Results of Performance Curve Override 

Example 12. Variable Refrigerant Flow System Override 

Problem Statement 

The variable refrigerant flow heat pump air conditioner has several available thermostat 
control options. These operation control schemes may not provide the type of control desired. 
How can we use a simple EMS addition to an input file that can override the specified 
thermostat control logic and set an alternate mode of operation? 

EMS Design Discussion 

Depending on the type of thermostat control logic, the Energyplus program will review the 
loads in each zone, the number of zones in cooling or heating, the deviation from set point 
temperature, etc. to determine the mode of operation for the heat pump condenser. Alternate 
control logic may be developed to more accurately reflect the operation of a specific 
manufacturers product, or investigate other control techniques. This control logic may be 
added to an input file and used as the operating control logic of the heat pump. 
This simple example shows how to use EMS actuators to SET the operating mode and cause 
a specific terminal unit to operate at a specified part-load ratio (PLR). When setting the 
terminal unit PLR, the terminal unit will turn on only if the condenser is allowed to operate 
according to the minimum and maximum outdoor temperature limits.  

EMS Input Objects  

The main input objects that implement this example are the variable refrigerant flow actuators 
that control the VRF system and specific terminal unit. Note that the terminal unit PLR can be 
controlled without controlling the mode of the VRF condenser, however, the specific terminal 
unit will operate in whatever mode the existing operation control scheme chooses. This 
example program simply “sets” the operating mode and PLR, other more complex control 
algorithms can be developed by the user as needed. 
 
    Output:EnergyManagementSystem, 
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    Verbose,                 !- Actuator Availability Dictionary Reporting 
    Verbose,                 !- Internal Variable Availability Dictionary 
Reporting 
    Verbose;                 !- EMS Runtime Language Debug Output Level 
 
  EnergyManagementSystem:ProgramCallingManager, 
    VRF OnOff Management,     !- Name 
    InsideHVACSystemIterationLoop,  !- EnergyPlus Model Calling Point 
    VRFControl;               !- Program Name 1 
 
  EnergyManagementSystem:Program, 
    VRFControl,               !- Name 
    SET VRF_Actuator_OnOff = VRF_Status_Heating, !- Program Line 2 
    SET VRF_TerminalUnit1_PLR = 0.5; 
 
  EnergyManagementSystem:Actuator, 
    VRF_Actuator_OnOff,       !- Name 
    VRF Heat Pump,            !- Actuated Component Unique Name 
    Variable Refrigerant Flow Heat Pump,      !- Actuated Component Type 
    Operating Mode;           !- Actuated Component Control Type 
 
  EnergyManagementSystem:Actuator, 
    VRF_TerminalUnit1_PLR,    !- Name 
    TU1,                      !- Actuated Component Unique Name 
    Variable Refrigerant Flow Terminal Unit,  !- Actuated Component Type 
    Part Load Ratio;          !- Actuated Component Control Type 
 
  EnergyManagementSystem:OutputVariable, 
    Erl VRF Control Status,   !- Name 
    VRF_Actuator_OnOff,       !- EMS Variable Name 
    Averaged,                 !- Type of Data in Variable 
    SystemTimeStep;           !- Update Frequency 
 
  Output:Variable,*,Erl VRF Control Status,detailed; 
  Output:Variable,*,Variable Refrigerant Flow Heat Pump Operating 
Mode,detailed; 
  Output:Variable,*,DX Cooling Coil Runtime Fraction,detailed; 
  Output:Variable,*,DX Heating Coil Runtime Fraction,detailed; 
 
  EnergyManagementSystem:ProgramCallingManager, 
    Init VRF Control Mode Constants,  !- Name 
    BeginNewEnvironment,           !- EnergyPlus Model Calling Point 
    InitializeVRFControlModes;     !- Program Name 1 
 
  EnergyManagementSystem:Program, 
    InitializeVRFControlModes,     !- Name 
    Set VRF_Status_Off = 0.0,      !- Program Line 1 
    Set VRF_Status_Cooling = 1.0,  !- Program Line 2 
    Set VRF_Status_Heating = 2.0;  !- Program Line 3 
 
  EnergyManagementSystem:GlobalVariable, 
    VRF_Status_Off,                !- Erl Variable 1 Name 
    VRF_Status_Cooling,            !- Erl Variable 2 Name 
    VRF_Status_Heating;            !- Erl Variable 3 Name 

Example 13. Surface Construction Actuator for Thermochromic Window 

Problem Statement 

There are a variety of novel new technologies for dynamic thermal envelopes that are the 
subject of research and development. Can we use EMS to investigate dynamic envelope 
technologies? 
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EMS Design Discussion 

As an example, we will show how to use the EMS to replicate a thermochromic window.  
EnergyPlus already has a dedicated model for thermochromic windows (see the input object 
WindowMaterial:GlazingGroup:Thermochromic) that is demonstrated in the example file 
called ThermochromicWindow.idf.  For this EMS example we will start with that file, remove 
the WindowMaterial:GlazingGroup:Thermochromic and emulate the thermochromic window 
using the EMS actuator called “Surface” with the control type “Construction State.”   
The first step is to create the individual Construction objects that will represent the individual 
states.  The original thermochromic example file already includes a series of 
WindowMaterial:Glazing input objects that correspond to the properties of the thermochromic 
glazing at different temperatures.  These glazing layers are then used in a series of 
Construction objects that represent the entire glazing system description at each temperature 
“state.”  Separate EnergyManagementSystem:ConstructionIndexVariable objects are then 
added for each Construction to setup Erl variables that point to each construction.  
The control algorithm is very simple.  The temperature of the glazing is used in a long IF-
ELSEIF-ELSE-ENDIF block to select the appropriate construction to assign the surface.  In 
this case the native thermochromic model has an important advantage in that the dedicated 
model can access the temperature of the middle pane in a triple glazed window whereas the 
EMS model can only access the temperature of the outside pane or the inside pane.  Here 
we use the temperature of the outside face of the surface because it is closer to the 
temperature of the middle pane (which can be much higher when in direct sun).  

EMS Input Objects 

The main input objects that implement this example of EMS-based thermochromic glazing 
system are listed below.  The surface called “Perimeter_ZN_1_wall_south_Window_1” is the 
one being actuated by EMS and we can observe the outcomes of the override by reporting 
the output variable called Surface Construction Index.  See the example file called 
EMSThermochromicWindow.idf. 
 
  Construction, 
    TCwindow_25,                !- Name 
    Clear3PPG,               !- Outside Layer 
    AIR 3MM,                 !- Layer 2 
    WO18RT25,              !- Layer 3 
    AIR 8MM,                 !- Layer 4 
    SB60Clear3PPG;           !- Layer 5 
 
  EnergyManagementSystem:ConstructionIndexVariable, 
    TCwindow_25,  
    TCwindow_25; 
 
  Construction, 
    TCwindow_27,                !- Name 
    Clear3PPG,               !- Outside Layer 
    AIR 3MM,                 !- Layer 2 
    WO18RT27,              !- Layer 3 
    AIR 8MM,                 !- Layer 4 
    SB60Clear3PPG;           !- Layer 5 
     
  EnergyManagementSystem:ConstructionIndexVariable, 
    TCwindow_27,  
    TCwindow_27; 
     
<<SNIPPED states between 27C and 80C >> 
     
  Construction, 
    TCwindow_80,                !- Name 
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    Clear3PPG,               !- Outside Layer 
    AIR 3MM,                 !- Layer 2 
    WO18RT80,              !- Layer 3 
    AIR 8MM,                 !- Layer 4 
    SB60Clear3PPG;           !- Layer 5 
 
  EnergyManagementSystem:ConstructionIndexVariable, 
    TCwindow_80,  
    TCwindow_80;     
 
  Construction, 
    TCwindow_85,                !- Name 
    Clear3PPG,               !- Outside Layer 
    AIR 3MM,                 !- Layer 2 
    WO18RT85,              !- Layer 3 
    AIR 8MM,                 !- Layer 4 
    SB60Clear3PPG;           !- Layer 5 
         
  EnergyManagementSystem:ConstructionIndexVariable, 
    TCwindow_85,  
    TCwindow_85;     
 
  EnergyManagementSystem:Sensor, 
    Win1_Tout, 
    Perimeter_ZN_1_wall_south_Window_1, 
    Surface Outside Temperature; 
 
  EnergyManagementSystem:Actuator, 
    Win1_Construct, 
    Perimeter_ZN_1_wall_south_Window_1, 
    Surface, 
    Construction State; 
 
  EnergyManagementSystem:ProgramCallingManager, 
    My thermochromic window emulator, 
    BeginTimestepBeforePredictor, 
    ZN_1_wall_south_Window_1_Control; 
     
  EnergyManagementSystem:Program, 
    ZN_1_wall_south_Window_1_Control, 
    IF Win1_Tout <= 26.0 , 
      Set Win1_Construct = TCwindow_25, 
    ELSEIF Win1_Tout <= 28.0 , 
      SEt Win1_Construct = TCwindow_27, 
    ELSEIF Win1_Tout <= 30.0 ,  
      SET Win1_Construct = TCwindow_29, 
    ELSEIF Win1_Tout <= 32.0 ,  
      SET Win1_Construct = TCwindow_31,  
    ELSEIF Win1_Tout <= 34.0 ,  
      SET Win1_Construct = TCwindow_33,  
    ELSEIF Win1_Tout <= 36.0 ,  
      SET Win1_Construct = TCwindow_35,  
    ELSEIF Win1_Tout <= 38.0 ,  
      SET Win1_Construct = TCwindow_37,  
    ELSEIF Win1_Tout <= 40.0 ,  
      SET Win1_Construct = TCwindow_39,   
    ELSEIF Win1_Tout <= 42.0 ,  
      SET Win1_Construct = TCwindow_41,   
    ELSEIF Win1_Tout <= 44.0 ,  
      SET Win1_Construct = TCwindow_43,  
    ELSEIF Win1_Tout <= 47.5 ,  
      SET Win1_Construct = TCwindow_45,  
    ELSEIF Win1_Tout <= 52.5 ,  
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      SET Win1_Construct = TCwindow_50,   
    ELSEIF Win1_Tout <= 57.5 ,  
      SET Win1_Construct = TCwindow_55,   
    ELSEIF Win1_Tout <= 62.5 ,  
      SET Win1_Construct = TCwindow_60,  
    ELSEIF Win1_Tout <= 67.5 ,  
      SET Win1_Construct = TCwindow_65,  
    ELSEIF Win1_Tout <= 72.5 ,  
      SET Win1_Construct = TCwindow_70,  
    ELSEIF Win1_Tout <= 77.5 ,  
      SET Win1_Construct = TCwindow_75, 
    ELSEIF Win1_Tout <= 82.5 ,  
      SET Win1_Construct = TCwindow_80,  
    ELSE ,  
      SET Win1_Construct = TCwindow_85,  
    ENDIF; 
 
Output:Variable, Perimeter_ZN_1_wall_south_Window_1, Surface Construction 
Index, timestep; 
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Debugging EMS Programs 

This section discusses approaches to debugging Erl programs. As you develop your own 
programs, you will need to identify and correct coding problems. The task of debugging an Erl 
program is challenging. Compared to most programming, with integrated development 
environments and sophisticated debugging interfaces, the Erl programmer has only 
rudimentary tools available for debugging. If you have some type of developer license and 
EnergyPlus source code, you could debug Erl programs inside a full-featured debugging 
environment (such as IVF integrated into VS9). But this is only for extremely advanced users 
and developers implementing EMS related code inside EnergyPlus. Most users’ EMS should 
have little need to deal with compilers and development environments, because enough 
information is produced by EnergyPlus when it runs their Erl programs. This section 
examines output related to EMS in an effort to help you debug your Erl programs. 

ERR File 

A key output file to review is the ERR file (eplusout.err), the one with the “.err” file extension. 
This is the common error file for all of EnergyPlus, and many EMS-related errors will appear 
there. The file might contain critical problems that arose while the Erl programs were being 
read in and processed. Although the EDD file will likely be the focus of most debugging, 
remember the ERR file. Also, sometimes no EDD file is produced from a run. This occurs 
when problems are captured early during input processing and the program fatals out before 
an Erl program is run. Depending on the run manager you use to execute EnergyPlus, the 
EDD file may be from a previous run, so check the file creation times for ERR and EDD.  

An especially important error revealed in the ERR file is truncation from too long input. Each 
program line in Erl is limited to 100 characters. (It becomes useful to keep variable names 
shorter in Erl because the line length limit can be onerous.)  If there are more than 100 
characters, the program truncates the line to the first 100. This will often throw a severe error 
that halts because the truncated line is not a valid statement. But an unlucky truncation may 
form a viable line of code and the program will run. Truncation of any Erl program line is 
surely a bad thing, so it is important to check the ERR file.  

EDD File 

If the Erl programs are processed and start running, the EDD becomes a primary source of 
information for debugging. The EDD file is the output file associated only with the EMS. When 
a line of Erl code is executed, and full trace is selected, the program will output records that 
are useful for debugging.  

It is very important to be careful with the EDD file. There are options to control how verbose 
the EDD file becomes with modes such as only the errors or a full trace. The full trace option 
should be used with care because a full line-by-line trace of EMS program execution for an 
annual run can easily create an enormous file that is too large for most computer systems.  

Line Trace 

You can use the EDD file to examine the execution of every line of code. If you request a 
verbose level of debugging output in the Output:EnergyManagementSystem input object, the 
EDD file will contain a series of text records that trace the execution of each line of Erl code. 
Traces contain the name of the program, the program line number, the text of the line, the 
result returned by executing the line (if any), and a timestamp that indicates when it was 
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executed during the environment period. Note that the EDD file is only produced if you have 
EMS/Erl programs in your input file. 

An example of a single trace follows. This is one record, or single line of text from one of the 
traces in an EDD file.  

VAV1MIXEDAIRMANAGERS,Line 1,SET VAV_1_COOLC_SETPOINT = 
SEASONAL_RESET_SAT_SCHED - ( T_VAV1FANOUT - T_VAV1FANIN),13.0000000000000, 
During Warmup, Occurrence info=CHICAGO IL USA TMY2-94846 WMO#=725300, 01/01 
18:30 - 18:45 

Each block of text is separated by comma, so the trace information could be read into a 
spreadsheet and formatted to columns using comma separation.  

“VAV1MIXEDAIRMANAGERS” is the name of a user-defined Erl Program.  

“Line 1” indicates that this trace is from the first line of the Erl program called 
VAV1MIXEDAIRMANAGERS.  

The next block of text, “SET VAV_1_COOLC_SETPOINT = 
SEASONAL_RESET_SAT_SCHED - ( T_VAV1FANOUT - T_VAV1FANIN)” is the Erl 
program statement contained at Line 1 in the Erl program called 
VAV1MIXEDAIRMANAGERS. 

The value “13.0000000000000” is the result of this particular SET statement. The value of 
13.0 has been assigned to the variable called VAV_1_COOLC_SETPOINT.  

The next block of text “During Warmup” indicates that the line was executed while the 
simulation was in a warm up phase. (Warmup happens during the beginning of each 
environment period to precondition the model’s transients with the conditions of the first day.)   

The next block of text “Occurrence info=CHICAGO IL USA TMY2-94846 WMO#=725300” 
indicates the environment period being simulated. This is a weather-file-based RunPeriod for 
Chicago using TMY2 data source associated with weather station number 725300.  

The last block of text “01/01 18:30 - 18:45” is the date and time of day for the simulation 
timestep when the Erl program line was executed.  
 

Debugging Strategies 

This section attempts to provide some debugging tips.  

There is no debugging environment, so the main way to obtain information is to use verbose 
mode and trace each line.  

Say, for example, we are trying to debug the following line:  

 ELSEIF (Hour >= 5) && (Hour < 19)  && (DayOfWeek >=2) && (DayOfWeek <=6) , 

The line trace, shown next, shows only the result of the logical condition, i.e., 0.0 (highlighted) 
if overall it is false or 1.0 if overall it is true.  

MYCOMPUTEDHEATINGSETPOINTPROG,Line 10,ELSEIF (HOUR >= 5) && (HOUR < 19)  && (DAYOFWEEK >=2) && (DAYOFWEEK 
<=6),0.0, Occurrence info=CHICAGO IL USA TMY2-94846 WMO#=725300, 09/23 10:20 - 10:30 

To debug what is going on with the individual terms in the logical expression, we can add 
some otherwise useless statements so line traces contain an echo of the current values of 
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the HOUR and DAYOFWEEK built-in variables. So if we add the following lines before the 
start of the IF block,  

    Set locHour = Hour, ! echo out for debug 
    Set locDay = DayOfWeek, ! echo out for debug 

We will see the values that Hour and DayOfWeek contain in the debug output. The local 
variables Erl variables locHour and locDay do not need to be used for anything, but by adding 
these Erl statements we can glean debugging insights.  

The line of Erl code is switched to all uppercase on input, so the line trace differs from the 
input file in that all characters are capitalized. If the input file was developed using a 
CamelCase convention, it may be much more difficult to read in the line trace output. Thus, 
the underscore character “_” may be a more useful convention for inputting Erl code because 
it will be more readable in the debugging traces.  
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